IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8280-d964393.html
   My bibliography  Save this article

Permeability and Mechanical Response of Granite after Thermal and CO 2 Bearing Fluid Hydro-Chemical Stimulation

Author

Listed:
  • Rong-Chen Tong

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • He-Juan Liu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yu-Jia Song

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Li-Huan Xie

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Sheng-Nan Ban

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The large scale extraction of geothermal energy can reduce CO 2 emissions. For hot dry rocks, the key to successful utilization depends on the efficiency of reservoir reconstruction. The chemical and thermal stimulation methods are always used in geothermal reservoir reconstruction except in hydraulic fracturing with high fluid injection pressure, which is believed to reduce the seismic hazard by applying before the high-pressure hydraulic fracturing stimulation. However, at the laboratory scale, there are still very limited experimental studies illustrating the combined effects of chemical and thermal stimulation on the permeability and mechanical properties of granite, which is regarded as the main type of hot dry rock. In this paper, comparative stimulation experiments were carried out, including thermal/cold stimulation, CO 2 bearing solution hydro-chemical stimulation, combined thermal and CO 2 bearing fluid stimulation. By means of nuclear magnetic resonance analysis, permeability test and triaxial compression test, the changes of the micro-structure, permeability and mechanical properties of granite under various stimulation conditions were analyzed. The experimental results show that, compared with the single thermal stimulation and CO 2 bearing fluid hydro-chemical stimulation, the superposition effect of thermal and CO 2 bearing fluid hydro-chemical stimulation can increase the number of micro-fractures in granite more effectively, thus increasing the permeability, while the elastic modulus and compressive strength decrease. Moreover, the cooling mode on the granite also has a certain influence on the stimulation effect. After water-cooling on the heated granite (300 °C), combined with the CO 2 bearing fluid stimulation (240 °C, 20 MPa), the permeability of granite is the highest, increasing by 17 times that of the initial state, and the porosity also increases by 144.4%, while the elastic modulus and compressive strength decrease by 14.3% and 18.4%, respectively. This implies that the deterioration of mechanical properties due to the micro-fractures increased by the thermal and chemical stimulation can enhance the fluid conductivity and heat extraction of granite. The methods in this paper can provide a reference for the combined application of thermal and chemical stimulation technology in artificial reservoir reconstruction of hot dry rocks.

Suggested Citation

  • Rong-Chen Tong & He-Juan Liu & Yu-Jia Song & Li-Huan Xie & Sheng-Nan Ban, 2022. "Permeability and Mechanical Response of Granite after Thermal and CO 2 Bearing Fluid Hydro-Chemical Stimulation," Energies, MDPI, vol. 15(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8280-:d:964393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Rui & Wang, Yao & Tang, Yu & Jiajun peng, & Liu, Jianjun & Yang, Chunhe, 2022. "3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties," Energy, Elsevier, vol. 261(PA).
    2. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Rui Song & Yu Tang & Yao Wang & Ruiyang Xie & Jianjun Liu, 2022. "Pore-Scale Numerical Simulation of CO 2 –Oil Two-Phase Flow: A Multiple-Parameter Analysis Based on Phase-Field Method," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. He, Youwei & Wang, Ning & Tang, Yong & Tang, Liangrui & He, Zhiyue & Rui, Zhenhua, 2024. "Formation-water evaporation and salt precipitation mechanism in porous media under movable water conditions in underground gas storage," Energy, Elsevier, vol. 286(C).
    4. Yao Wang & Shengjun Li & Rui Song & Jianjun Liu & Min Ye & Shiqi Peng & Yongjun Deng, 2022. "Effects of Grain Size and Layer Thickness on the Physical and Mechanical Properties of 3D-Printed Rock Analogs," Energies, MDPI, vol. 15(20), pages 1-19, October.
    5. Liu, Qiang & Li, Jialong & Liang, Bing & Liu, Jianjun & Sun, Weiji & He, Jie & Lei, Yun, 2023. "Complex wettability behavior triggering mechanism on imbibition: A model construction and comparative study based on analysis at multiple scales," Energy, Elsevier, vol. 275(C).
    6. Zhang, Haitao & Wu, Bisheng & Luo, Xianqi & Tang, Minggao & Zhang, Xuhui & Yang, Liu & Nie, Yuanxun & Zhou, Jiaxing & Zhang, Li & Li, Guangyao, 2024. "Multiphysical evolution and dynamic competition involved in natural gas hydrate dissociation in porous media and its implications for engineering," Energy, Elsevier, vol. 289(C).
    7. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    8. Xing, Zhihao & Yao, Jun & Liu, Lei & Sun, Hai, 2024. "Efficiently reconstructing high-quality details of 3D digital rocks with super-resolution Transformer," Energy, Elsevier, vol. 300(C).
    9. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    10. Rui Song & Jianjun Liu, 2024. "Porous Flow of Energy and CO 2 Transformation and Storage in Deep Formations: An Overview," Energies, MDPI, vol. 17(11), pages 1-3, May.
    11. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    12. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    13. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    14. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    15. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    16. Guo, Bei-Er & Xiao, Nan & Martyushev, Dmitriy & Zhao, Zhi, 2024. "Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources," Energy, Elsevier, vol. 294(C).
    17. Li, Xingxun & Wei, Rucheng & Li, Qingping & Pang, Weixin & Chen, Guangjin & Sun, Changyu, 2023. "Application of infrared thermal imaging technique in in-situ temperature field measurement of hydrate-bearing sediment under thermal stimulation," Energy, Elsevier, vol. 265(C).
    18. Song, Rui & Wang, Yao & Tang, Yu & Jiajun peng, & Liu, Jianjun & Yang, Chunhe, 2022. "3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties," Energy, Elsevier, vol. 261(PA).
    19. Hongying Tan & Hejuan Liu & Xilin Shi & Hongling Ma & Xiaosong Qiu & Yintong Guo & Shengnan Ban, 2023. "Mechanical and Acoustic Response of Low-Permeability Sandstone under Multilevel Cyclic Loading-Unloading Stress Paths," Energies, MDPI, vol. 16(19), pages 1-18, September.
    20. Wei, Jianguang & Zhang, Ao & Li, Jiangtao & Shang, Demiao & Zhou, Xiaofeng, 2023. "Study on microscale pore structure and bedding fracture characteristics of shale oil reservoir," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8280-:d:964393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.