IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6663-d1241639.html
   My bibliography  Save this article

Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings

Author

Listed:
  • Łukasz J. Orman

    (Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland)

  • Natalia Krawczyk

    (Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland)

  • Norbert Radek

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland)

  • Stanislav Honus

    (Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic)

  • Jacek Pietraszek

    (Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland)

  • Luiza Dębska

    (Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland)

  • Agata Dudek

    (Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland)

  • Artur Kalinowski

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland)

Abstract

People tend to spend considerable amounts of time in buildings; thus the issue of providing proper indoor environmental quality is of significant importance. This paper experimentally analyses the subjective sensations of the occupants of intelligent and traditional buildings with the focus on possible differences between these two types of buildings. The study is based on a large database of 1302 questionnaires collected in 92 rooms where simultaneous measurements of the indoor environment physical parameters (air and globe temperature, relative humidity, carbon dioxide concentration, and illuminance) were carried out. Their impact on the subjective assessment of the indoor environment has been presented and analysed. The results show that the occupants seemed to be more favourable towards the indoor conditions in the intelligent building; however, the differences in comparison to the traditional buildings were not considerable. Similarly, self-reported productivity proved to be higher in the intelligent building, while the optimal range of air temperature, which ensured highest productivity, was 22–25 °C. Moreover, a strong correlation between the occupants’ overall comfort and their perception of the air quality has been found.

Suggested Citation

  • Łukasz J. Orman & Natalia Krawczyk & Norbert Radek & Stanislav Honus & Jacek Pietraszek & Luiza Dębska & Agata Dudek & Artur Kalinowski, 2023. "Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings," Energies, MDPI, vol. 16(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6663-:d:1241639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio J. Aguilar & María L. de la Hoz-Torres & Diego P. Ruiz & Mª Dolores Martínez-Aires, 2022. "Monitoring and Assessment of Indoor Environmental Conditions in Educational Building Using Building Information Modelling Methodology," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
    2. Yeo-Kyung Lee & Young Il Kim & Woo-Seok Lee, 2022. "Development of CO 2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost," Energies, MDPI, vol. 15(9), pages 1-28, April.
    3. Maria Ghita & Ricardo A. Cajo Diaz & Isabela R. Birs & Dana Copot & Clara M. Ionescu, 2022. "Ergonomic and Economic Office Light Level Control," Energies, MDPI, vol. 15(3), pages 1-14, January.
    4. Gyu-Bae Lee & Seung-Min Lee & Seung-Eon Lee & Jae-Weon Jeong & Jong-Won Lee, 2022. "A Comparative Field Study of Indoor Environment Quality and Work Productivity between Job Types in a Research Institute in Korea," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    5. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Leonidas Bourikas & Stephanie Gauthier & Nicholas Khor Song En & Peiyao Xiong, 2021. "Effect of Thermal, Acoustic and Air Quality Perception Interactions on the Comfort and Satisfaction of People in Office Buildings," Energies, MDPI, vol. 14(2), pages 1-18, January.
    7. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    8. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orest Voznyak & Edyta Dudkiewicz & Marta Laska & Ievgen Antypov & Nadiia Spodyniuk & Iryna Sukholova & Olena Savchenko, 2024. "A New Approach to the Economic Evaluation of Thermomodernization: Annual Assessment Based on the Example of Production Space," Energies, MDPI, vol. 17(9), pages 1-20, April.
    2. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz J. Orman & Grzegorz Majewski & Norbert Radek & Jacek Pietraszek, 2022. "Analysis of Thermal Comfort in Intelligent and Traditional Buildings," Energies, MDPI, vol. 15(18), pages 1-25, September.
    2. Łukasz Jan Orman & Natalia Siwczuk & Norbert Radek & Stanislav Honus & Jerzy Zbigniew Piotrowski & Luiza Dębska, 2024. "Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions," Energies, MDPI, vol. 17(3), pages 1-16, January.
    3. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    4. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    6. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    7. Gloria Jiménez-Marín & Rodrigo Elías Zambrano & Araceli Galiano-Coronil & Rafael Ravina-Ripoll, 2021. "Business and Energy Efficiency in the Age of Industry 4.0: The Hulten, Broweus and Van Dijk Sensory Marketing Model Applied to Spanish Textile Stores during the COVID-19 Crisis," Energies, MDPI, vol. 14(7), pages 1-10, April.
    8. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.
    9. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    10. Lin Yang & Sha Liu & Jiaqi Liu, 2021. "The Interaction Effect of Occupant Behavior-Related Factors in Office Buildings Based on the DNAS Theory," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    11. Lee-Yong Sung & Jonghoon Ahn, 2020. "Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment," Energies, MDPI, vol. 13(5), pages 1-15, March.
    12. Talib Dbouk & Dimitris Drikakis, 2022. "Natural Ventilation and Aerosol Particles Dispersion Indoors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    13. Michael M. Santos & Ana Vaz Ferreira & João C. G. Lanzinha, 2022. "Passive Solar Systems for the Promotion of Thermal Comfort in African Countries: A Review," Energies, MDPI, vol. 15(23), pages 1-37, December.
    14. Rafaela Bortolini & Núria Forcada, 2021. "Association between Building Characteristics and Indoor Environmental Quality through Post-Occupancy Evaluation," Energies, MDPI, vol. 14(6), pages 1-15, March.
    15. Qibo Liu & Yimeng Zhang & Wendong Ma & Juan Ren, 2023. "Application of an Architect-Friendly Digital Design Approach to the Wind Environment of Campus Dormitory Buildings," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    16. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    17. Nematchoua, Modeste Kameni & Ricciardi, Paola & Buratti, Cinzia, 2017. "Statistical analysis of indoor parameters an subjective responses of building occupants in a hot region of Indian ocean; a case of Madagascar island," Applied Energy, Elsevier, vol. 208(C), pages 1562-1575.
    18. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    19. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    20. Nematchoua, Modeste Kameni & Orosa, José A. & Reiter, Sigrid, 2019. "Energy consumption assessment due to the mobility of inhabitants and multiannual prospective on the horizon 2030–2050 in one Belgium city," Energy, Elsevier, vol. 171(C), pages 523-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6663-:d:1241639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.