IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14332-d961086.html
   My bibliography  Save this article

A Comparative Field Study of Indoor Environment Quality and Work Productivity between Job Types in a Research Institute in Korea

Author

Listed:
  • Gyu-Bae Lee

    (Department of Architectural Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea)

  • Seung-Min Lee

    (Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Daehwa-dong, Ilsanseo-gu, Goyang-si 10223, Korea)

  • Seung-Eon Lee

    (Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Daehwa-dong, Ilsanseo-gu, Goyang-si 10223, Korea)

  • Jae-Weon Jeong

    (Department of Architectural Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea)

  • Jong-Won Lee

    (Department of Architectural Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea
    Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Daehwa-dong, Ilsanseo-gu, Goyang-si 10223, Korea)

Abstract

Indoor environment quality (IEQ) evaluation can help improve building satisfaction and productivity of residents. However, for more efficient analysis, it is necessary to gain a large amount of data on the differences between specific groups, such as building and resident work types. In this study, we conducted an IEQ evaluation for administrators and researchers, which are occupational groups of a research institute. The evaluation was conducted using quantitative and qualitative methods to find the relationships between IEQ satisfaction and work productivity for each job type. Our results showed that light environment and office layout were correlated with the work productivity of administrators, and light environment, office layout, thermal comfort, and sound environment were correlated with the work productivity of researchers. In addition, there was a significant difference in layout and thermal comfort items between administrators and researchers. Therefore, this study revealed significant differences in the effect of IEQ evaluation on work productivity between different occupations in a research institute.

Suggested Citation

  • Gyu-Bae Lee & Seung-Min Lee & Seung-Eon Lee & Jae-Weon Jeong & Jong-Won Lee, 2022. "A Comparative Field Study of Indoor Environment Quality and Work Productivity between Job Types in a Research Institute in Korea," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14332-:d:961086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mendell, M.J. & Fisk, W.J. & Kreiss, K. & Levin, H. & Alexander, D. & Cain, W.S. & Girman, J.R. & Hines, C.J. & Jensen, P.A. & Milton, D.K. & Rexroat, L.P. & Wallingford, K.M., 2002. "Improving the health of workers in indoor environments: Priority research needs for a National Occupational Research Agenda," American Journal of Public Health, American Public Health Association, vol. 92(9), pages 1430-1440.
    2. Tiberiu Catalina & Stefan Alexandru Ghita & Lelia Letiția Popescu & Răzvan Popescu, 2022. "Survey and Measurements of Indoor Environmental Quality in Urban/Rural Schools Located in Romania," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    3. Lexuan Zhong & Jing Yuan & Brian Fleck, 2019. "Indoor Environmental Quality Evaluation of Lecture Classrooms in an Institutional Building in a Cold Climate," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz J. Orman & Natalia Krawczyk & Norbert Radek & Stanislav Honus & Jacek Pietraszek & Luiza Dębska & Agata Dudek & Artur Kalinowski, 2023. "Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. Mustafa Shetaw & Louis Gyoh & Michael Gerges & Nenpin Dimka, 2024. "A Bibliometric Review of Indoor Environment Quality Research and Its Effects on Occupant Productivity (2011–2023)," Sustainability, MDPI, vol. 16(22), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erica Cochran Hameen & Bobuchi Ken-Opurum & Young Joo Son, 2020. "Protocol for Post Occupancy Evaluation in Schools to Improve Indoor Environmental Quality and Energy Efficiency," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    2. Aminhossein Jahanbin & Giovanni Semprini, 2020. "Numerical Study on Indoor Environmental Quality in a Room Equipped with a Combined HRV and Radiator System," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    3. Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
    4. Armando Pelliccioni & Paolo Monti & Giorgio Cattani & Fabio Boccuni & Marco Cacciani & Silvia Canepari & Pasquale Capone & Maria Catrambone & Mariacarmela Cusano & Maria Concetta D’Ovidio & Antonella , 2020. "Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    5. Ma, Zhihao & Cui, Shuang & Chen, Jianli, 2024. "Demand response through ventilation and latent load adjustment for commercial buildings in humid climate zones," Applied Energy, Elsevier, vol. 373(C).
    6. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    7. Erika Dolnikova & Dusan Katunsky & Marian Vertal & Marek Zozulak, 2020. "Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    8. He Zhang & Ravi Srinivasan, 2020. "A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management," Sustainability, MDPI, vol. 12(21), pages 1-38, October.
    9. Arturo Realyvásquez-Vargas & Aidé Aracely Maldonado-Macías & Karina Cecilia Arredondo-Soto & Yolanda Baez-Lopez & Teresa Carrillo-Gutiérrez & Guadalupe Hernández-Escobedo, 2020. "The Impact of Environmental Factors on Academic Performance of University Students Taking Online Classes during the COVID-19 Pandemic in Mexico," Sustainability, MDPI, vol. 12(21), pages 1-22, November.
    10. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    11. Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Jutta Hollands & Azra Korjenic, 2021. "Indirect Economic Effects of Vertical Indoor Green in the Context of Reduced Sick Leave in Offices," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    13. Felipe Quesada-Molina & Sebastián Astudillo-Cordero, 2023. "Indoor Environmental Quality Assessment Model (IEQ) for Houses," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    14. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    15. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14332-:d:961086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.