Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
- Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
- Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
- Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
- Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
- He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
- Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
- Bo Wang & Tiancheng Wang & Mao Yang & Chao Han & Dawei Huang & Dake Gu, 2023. "Ultra-Short-Term Prediction Method of Wind Power for Massive Wind Power Clusters Based on Feature Mining of Spatiotemporal Correlation," Energies, MDPI, vol. 16(6), pages 1-16, March.
- Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
- Vladislavleva, Ekaterina & Friedrich, Tobias & Neumann, Frank & Wagner, Markus, 2013. "Predicting the energy output of wind farms based on weather data: Important variables and their correlation," Renewable Energy, Elsevier, vol. 50(C), pages 236-243.
- Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
- Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
- Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
- Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
- Naik, Jyotirmayee & Dash, Sujit & Dash, P.K. & Bisoi, Ranjeeta, 2018. "Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network," Renewable Energy, Elsevier, vol. 118(C), pages 180-212.
- He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.
More about this item
Keywords
ANN; ensemble approaches; machine learning; power generation; prediction; renewable energy; solar irradiance; wind power;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6414-:d:1233077. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.