IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6414-d1233077.html
   My bibliography  Save this article

Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques

Author

Listed:
  • Mohammad Abdul Baseer

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Anas Almunif

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Ibrahim Alsaduni

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Nazia Tazeen

    (Department of Computer Science Engineering, School of Engineering and Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, India)

Abstract

Renewable energy (RE) sources, such as wind, geothermal, bioenergy, and solar, have gained interest in developed regions. The rapid expansion of the economies in the Middle East requires massive increases in electricity production capacity, and currently fossil fuel reserves meet most of the power station demand. There is a considerable measure of unpredictability surrounding the locations of the concerned regions where RE can be used to generate electricity. This makes forecasting difficult for the investor to estimate future electricity production that could be generated in each area over the course of a specific period. Energy production forecasting with complex time-series data is a challenge. However, artificial neural networks (ANNs) are well suited for handling nonlinearity effectively. This research aims to investigate the various ANN models capable of providing reliable predictions for sustainable sources of power such as wind and solar. In addition to the ANN models, a state-of-the-art ensemble learning approach is used to improve the accuracy of predictions further. The proposed strategies can forecast RE generation accurately over short and long time frames, relying on historical data for precise predictions. This work proposes a new hybrid ensemble framework that strategically combines multiple complementary machine learning (ML) models to improve RE forecasting accuracy. The ensemble learning (EL) methodology outperforms long short-term memory (LSTM), light gradient boosting machine (LightGBM), and sequenced-GRU in predicting wind power (MAE: 0.782, MAPE: 0.702, RMSE: 0.833) and solar power (MAE: 1.082, MAPE: 0.921, RMSE: 1.055). It achieved an impressive R 2 value of 0.9821, indicating its superior accuracy.

Suggested Citation

  • Mohammad Abdul Baseer & Anas Almunif & Ibrahim Alsaduni & Nazia Tazeen, 2023. "Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques," Energies, MDPI, vol. 16(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6414-:d:1233077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    2. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    3. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    5. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    6. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
    7. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    2. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    3. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    4. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    7. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    8. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    9. Bo Wang & Tiancheng Wang & Mao Yang & Chao Han & Dawei Huang & Dake Gu, 2023. "Ultra-Short-Term Prediction Method of Wind Power for Massive Wind Power Clusters Based on Feature Mining of Spatiotemporal Correlation," Energies, MDPI, vol. 16(6), pages 1-16, March.
    10. Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
    11. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
    12. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    13. Vladislavleva, Ekaterina & Friedrich, Tobias & Neumann, Frank & Wagner, Markus, 2013. "Predicting the energy output of wind farms based on weather data: Important variables and their correlation," Renewable Energy, Elsevier, vol. 50(C), pages 236-243.
    14. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    15. Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
    16. Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
    17. Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
    18. Naik, Jyotirmayee & Dash, Sujit & Dash, P.K. & Bisoi, Ranjeeta, 2018. "Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network," Renewable Energy, Elsevier, vol. 118(C), pages 180-212.
    19. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6414-:d:1233077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.