IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5876-d1213064.html
   My bibliography  Save this article

Carbon Sequestration in Remediated Post-Mining Soils: A New Indicator for the Vertical Soil Organic Carbon Variability Evaluation in Remediated Post-Mining Soils

Author

Listed:
  • Aneta Kowalska

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Jana Růžičková

    (Centre ENET—Energy Units for Utilization of Non-Traditional Energy Sources, VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic)

  • Marek Kucbel

    (Centre ENET—Energy Units for Utilization of Non-Traditional Energy Sources, VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic)

  • Anna Grobelak

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

Abstract

The present study experimentally investigated two different open-cast post-mining areas with different remediation methods for the vertical distribution of sequestered soil organic carbon (SOC). The study has been performed for two soil layers (0–15 cm, and 15–30 cm) for the four areas with different remediation advancement (up to 20 years) at both studied post-mining soils: the limestone post-mining soil remediated with embankment and lignite post-mining soil remediated with sewage sludge. The study revealed that SOC is more stable within soil depths for lignite post-mining soil remediated with sewage sludge in comparison to the limestone post-mining soil remediated with embankment. The lignite post-mining soil remediated with sewage sludge showed a better hydrophobicity, humidity, aromaticity, and C/N ratio according to the 13 C NMR. Therefore, in that soil, an increased microbial community has been observed. The study observed a positive correlation between GRSP content with a fungi community within soil depths. For lignite post-mining soil remediated with sewage sludge, the activity of ureases and dehydrogenases was generally lower compared to the post-mining soil remediation with embankment. The investigation found good parameters of Ce and NCER which for both studied areas were negative which indicate for the privilege of the higher capturing of CO 2 over its release from the soil into the atmosphere. The study finds no relevant changes in SOC, POXC, TC, and LOI content within soil depth and remediation age. Due to the lack of a possible well-describing indicator of the vertical distribution of SOC stability in post-mining remediation soil, we proposed two different indicators for differentially managed post-mining soil remediations. The model of calculation of vertical SOC variability index can be universally used for different post-mining soils under remediation, however, both proposed calculated indexes are unique for studied soils. The proposed model of an index may be helpful for remediation management, C sequestration prediction, and lowering the carbon footprint of mining activity.

Suggested Citation

  • Aneta Kowalska & Jana Růžičková & Marek Kucbel & Anna Grobelak, 2023. "Carbon Sequestration in Remediated Post-Mining Soils: A New Indicator for the Vertical Soil Organic Carbon Variability Evaluation in Remediated Post-Mining Soils," Energies, MDPI, vol. 16(16), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5876-:d:1213064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    2. Magdalena Myszura-Dymek & Grażyna Żukowska, 2023. "The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Erhan Erdel & Uğur Şimşek & Tuba Genç Kesimci, 2023. "Effects of Fungi on Soil Organic Carbon and Soil Enzyme Activity under Agricultural and Pasture Land of Eastern Türkiye," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    4. Danish, Mohammed & Ahmad, Tanweer, 2018. "A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Sowmya Vanama & Maruthi Pesari & Gobinath Rajendran & Uma Devi Gali & Santosha Rathod & Rajanikanth Panuganti & Srivalli Chilukuri & Kannan Chinnaswami & Sumit Kumar & Tatiana Minkina & Estibaliz Sans, 2023. "Correlation of the Effect of Native Bioagents on Soil Properties and Their Influence on Stem Rot Disease of Rice," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    5. Cerciello, Francesca & Senneca, Osvalda & Coppola, Antonio & Forgione, Annunziata & Lacovig, Paolo & Salatino, Piero, 2021. "The influence of temperature on the nature and stability of surface-oxides formed by oxidation of char," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    7. Yang, Shuangpeng & umar, Muhammad, 2022. "How globalization is reshaping the environmental quality in G7 economies in the presence of renewable energy initiatives?," Renewable Energy, Elsevier, vol. 193(C), pages 128-135.
    8. Nur Adi Saputra & Saptadi Darmawan & Lisna Efiyanti & Djeni Hendra & Santiyo Wibowo & Adi Santoso & Djarwanto & Gusmailina & Sri Komarayati & Dian Anggraini Indrawan & Yuniawati & Deded Sarip Nawawi &, 2022. "A Novel Mesoporous Activated Carbon Derived from Calliandra calothyrsus via Physical Activation: Saturation and Superheated," Energies, MDPI, vol. 15(18), pages 1-16, September.
    9. Adrianna Kamińska & Joanna Sreńscek-Nazzal & Karolina Kiełbasa & Jadwiga Grzeszczak & Jarosław Serafin & Agnieszka Wróblewska, 2023. "Carbon-Supported Nickel Catalysts—Comparison in Alpha-Pinene Oxidation Activity," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    10. Ledesma, Brenda & Beltramone, Andrea, 2021. "Revalorization of agro-industrial waste as a catalyst source for production of biofuels," Renewable Energy, Elsevier, vol. 174(C), pages 747-757.
    11. Nathaniel Anderson & Hongmei Gu & Richard Bergman, 2021. "Comparison of Novel Biochars and Steam Activated Carbon from Mixed Conifer Mill Residues," Energies, MDPI, vol. 14(24), pages 1-19, December.
    12. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    13. Ullah, Habib & Liu, Guijian & Yousaf, Balal & Ali, Muhammad Ubaid & Abbas, Qumber & Zhou, Chuncai & Rashid, Audil, 2018. "Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products," Energy, Elsevier, vol. 158(C), pages 1192-1203.
    14. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    15. Shaukat, Muhammad & Muhammad, Sher & Maas, Ellen D.V.L. & Khaliq, Tasneem & Ahmad, Ashfaq, 2022. "Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model," Ecological Modelling, Elsevier, vol. 466(C).
    16. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    17. Liang Cheng & Zhaolong Ge & Binwei Xia & Qian Li & Jiren Tang & Yugang Cheng & Shaojie Zuo, 2018. "Research on Hydraulic Technology for Seam Permeability Enhancement in Underground Coal Mines in China," Energies, MDPI, vol. 11(2), pages 1-19, February.
    18. Tian, Shen & Ma, Jiahui & Shao, Shuangquan & Tian, Qingfeng & Wang, Zhiqiang & Zhang, Zheyu & Hu, Kaiyong, 2024. "Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow," Energy, Elsevier, vol. 290(C).
    19. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Ting Liu & Baiquan Lin & Quanle Zou & Chuanjie Zhu, 2016. "Microscopic mechanism for enhanced coal bed methane recovery and outburst elimination by hydraulic slotting: A case study in Yangliu mine, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 597-614, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5876-:d:1213064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.