IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5831-d1211592.html
   My bibliography  Save this article

Synergistic Effect of Water-Soluble Hydroxylated Multi-Wall Carbon Nanotubes and Graphene Nanoribbons Coupled with Tetra Butyl Ammonium Bromide on Kinetics of Carbon Dioxide Hydrate Formation

Author

Listed:
  • Shu-Li Wang

    (Energy School, Quanzhou Vocational and Technical University, Jinjiang 332005, China
    Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China)

  • Yan-Yun Xiao

    (Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China)

  • Shi-Dong Zhou

    (Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China)

  • Kun Jiang

    (Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China)

  • Yi-Song Yu

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yong-Chao Rao

    (Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China)

Abstract

In this work, the thermodynamics and kinetics of hydrate formation in 9.01 wt% tetra butyl ammonium bromide (TBAB) mixed with water-soluble hydroxylated multi-wall carbon nanotube (MWCNTol) systems were characterized by measuring hydrate formation conditions, induction time, and final gas consumption. The results showed that MWCNTols had little effect on the phase equilibrium of CO 2 hydrate formation. Nanoparticles (graphene nanoribbons (GNs) and MWCNTols) could significantly shorten the induction time. When the concentration was ≤0.06 wt%, MWCNTols had a better effect on the induction time than the GN system, and the maximum reduction in induction time reached 44.22%. The large surface area of MWCNTols could provide sites for heterogeneous nucleation, thus shortening the induction time of hydrate formation. Furthermore, adding different concentrations of nanoparticles to the 9.01 wt% TBAB solution effectively increased the final gas consumption, and the maximum increase was 10.44% of the 9.01 wt% TBAB + 0.08 wt% GN system. Meanwhile, the suitable initial pressure and experimental temperature could also promote the hydrate formation and increase the motivation in hydrate formation. The 9.01 wt% TBAB + 0.02 wt% MWCNTol system had the best effect at 3.5 MPa and 277.15 K. The induction time was reduced by 66.67% and the final gas consumption was increased by 284.11% compared to those of the same system but at a different initial pressure and experimental temperature. This work helps to promote the industrial application of hydrate technology in CO 2 capture and storage.

Suggested Citation

  • Shu-Li Wang & Yan-Yun Xiao & Shi-Dong Zhou & Kun Jiang & Yi-Song Yu & Yong-Chao Rao, 2023. "Synergistic Effect of Water-Soluble Hydroxylated Multi-Wall Carbon Nanotubes and Graphene Nanoribbons Coupled with Tetra Butyl Ammonium Bromide on Kinetics of Carbon Dioxide Hydrate Formation," Energies, MDPI, vol. 16(15), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5831-:d:1211592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    2. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    3. Renault-Crispo, Jean-Sébastien & Coulombe, Sylvain & Servio, Phillip, 2017. "Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes," Energy, Elsevier, vol. 128(C), pages 414-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    2. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    5. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    6. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Nashed, Omar & Partoon, Behzad & Lal, Bhajan & Sabil, Khalik M. & Shariff, Azmi Mohd, 2019. "Investigation of functionalized carbon nanotubes' performance on carbon dioxide hydrate formation," Energy, Elsevier, vol. 174(C), pages 602-610.
    8. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    10. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    11. Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
    12. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Luiz F. Rodrigues & Alessandro Ramos & Gabriel de Araujo & Edson Silveira & Marcelo Ketzer & Rogerio Lourega, 2019. "High-Pressure and Automatized System for Study of Natural Gas Hydrates," Energies, MDPI, vol. 12(16), pages 1-14, August.
    15. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    16. Judit Farrando-Perez & Rafael Balderas-Xicohtencatl & Yongqiang Cheng & Luke Daemen & Carlos Cuadrado-Collados & Manuel Martinez-Escandell & Anibal J. Ramirez-Cuesta & Joaquin Silvestre-Albero, 2022. "Rapid and efficient hydrogen clathrate hydrate formation in confined nanospace," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    18. Tinku Saikia & Shirish Patil & Abdullah Sultan, 2023. "Hydrogen Hydrate Promoters for Gas Storage—A Review," Energies, MDPI, vol. 16(6), pages 1-17, March.
    19. Li, Junhui & Shi, Lingli & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Kinetic characteristics of methane hydrate formation under the synergistic effect of electric field and Hexadecyl trimethyl ammonium Bromide," Energy, Elsevier, vol. 283(C).
    20. Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5831-:d:1211592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.