IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v177y2023ics1364032123000734.html
   My bibliography  Save this article

Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation

Author

Listed:
  • Lee, Wonhyeong
  • Kang, Dong Woo
  • Ahn, Yun-Ho
  • Lee, Jae W.

Abstract

The slow formation rate of hydrogen clathrate hydrate is one of the most challenging factors impeding the utilization of clathrate hydrate as a hydrogen storage media. Blending of a hydrate seed solution and a liquid phase thermodynamic promoter is introduced in this study to promote the formation of hydrogen hydrates for safe hydrogen storage. Cyclopentane hydrate seeds induced instantaneous growth of cyclopentane + hydrogen mixed hydrates by providing nucleation sites for hydrate formation. Increasing the amount of hydrate seeds accelerated the formation rate of hydrates at the early stage of the reaction because the surface area of hydrate crystals increased. However, the total storage capacity was not so high because the diffusion of hydrogen molecules into empty cages of pre-constructed hydrate crystals was difficult. This diffusion limitation was overcome by the addition of the cyclopentane liquid phase promoter for the simultaneous formation of cyclopentane and hydrogen hydrates with their porous vertical growth. Tetrahydrofuran, one of the most commonly used organic promoters for hydrogen hydrates, was not suitable for the blended hydrate seed and liquid promoter system because its miscibility with water hindered the formation of hydrogen-bond cages and did not induce vertical growth of porous hydrates. This study provides insights into the role of liquid promoter blended with hydrate seeds in enhancing formation of hydrogen hydrates as sustainable hydrogen storage.

Suggested Citation

  • Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:rensus:v:177:y:2023:i:c:s1364032123000734
    DOI: 10.1016/j.rser.2023.113217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Cai, Jing & Tao, Yuan-Qing & von Solms, Nicolas & Xu, Chun-Gang & Chen, Zhao-Yang & Li, Xiao-Sen, 2019. "Experimental studies on hydrogen hydrate with tetrahydrofuran by differential scanning calorimeter and in-situ Raman," Applied Energy, Elsevier, vol. 243(C), pages 1-9.
    3. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    4. Shao, Yazhou & Yang, Longbin & Zhang, Qun & Wang, Shidong & Wang, Kunfang & Xu, Runzhang, 2020. "Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    6. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Joshua T. Weissman & Stephen M. Masutani, 2017. "Hydrogen Storage Capacity of Tetrahydrofuran and Tetra- N -Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions," Energies, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    2. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    4. Zhang, Ye & Bhattacharjee, Gaurav & Dharshini Vijayakumar, Mohana & Linga, Praveen, 2022. "Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter," Applied Energy, Elsevier, vol. 311(C).
    5. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    7. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    8. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    9. Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).
    10. Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.
    11. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Fu, Hongming & Xue, Kaili & Li, Zhaohao & Zhang, Heng & Gao, Dan & Chen, Haiping, 2023. "Study on the performance of CO2 capture from flue gas with ceramic and PTFE membrane contactors," Energy, Elsevier, vol. 263(PA).
    13. Wang, Fei & Song, Yuan-Mei & Liu, Guo-Qiang & Guo, Gang & Luo, Sheng-Jun & Guo, Rong-Bo, 2018. "Rapid methane hydrate formation promoted by Ag&SDS-coated nanospheres for energy storage," Applied Energy, Elsevier, vol. 213(C), pages 227-234.
    14. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    15. Wang, Pengfei & Teng, Ying & Zhu, Jinlong & Bao, Wancheng & Han, Songbai & Li, Yun & Zhao, Yusheng & Xie, Heping, 2022. "Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    17. Zhang, Jianbo & Wang, Zhiyuan & Liu, Shun & Zhang, Weiguo & Yu, Jing & Sun, Baojiang, 2019. "Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    19. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    20. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:177:y:2023:i:c:s1364032123000734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.