IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016726.html
   My bibliography  Save this article

Probing the pathway of H2-THF and H2-DIOX sII hydrates formation: Implication on hydrate-based H2 storage

Author

Listed:
  • Zhang, Jibao
  • Li, Yan
  • Rao, Yizhi
  • Li, Yang
  • He, Tianbiao
  • Linga, Praveen
  • Wang, Xiaolin
  • Chen, Qian
  • Yin, Zhenyuan

Abstract

Hydrogen (H2) is recognized as a promising energy carrier for the future world, owing to its high energy density and zero carbon emissions. H2 storage in the form of solidified hydrates represents an emerging economic-viable and eco-friendly technology for large-scale application. Thermodynamic hydrate promoters (THPs) enhanced H2 hydrate formation at mild pressure conditions by forming sII or sH hydrates. However, the formation pathway and promotion mechanism of H2-THP sII hydrates are yet to be elucidated. In this study, the composition of H2-THF/H2-DIOX sII hydrates was analyzed in both 5.56 mol% THF and DIOX systems by high-pressure μ-DSC. The well-designed kinetic experiments coupled with morphology observation were conducted to reveal the key stage for H2-THF/H2-DIOX hydrates formation at pressures from 8.3 MPa to 18.3 MPa. Moreover, Raman spectroscopy was employed to validate the proposed formation pathway and the cage occupancy ratio of H2 and THP molecules. Both pure THP hydrates and H2-THP hydrates were identified by high-pressure μ-DSC. Formation of H2-THP sII hydrates requires a specific condition that both H2 and THP molecules simultaneously occupy the small and large cages of sII hydrates for 5.56 mol% THP. Based on the Raman spectroscopy, the ratio of H2 molecules in the 512 small cages to THP molecules in the 51264 large cages increased with pressure. The experimental results contribute to a fundamental understanding of the role of THP in promoting H2-THP hydrate formation. The findings guide the adoption of effective THPs with optimal concentrations and contact patterns for hydrate-based H2 storage technology.

Suggested Citation

  • Zhang, Jibao & Li, Yan & Rao, Yizhi & Li, Yang & He, Tianbiao & Linga, Praveen & Wang, Xiaolin & Chen, Qian & Yin, Zhenyuan, 2024. "Probing the pathway of H2-THF and H2-DIOX sII hydrates formation: Implication on hydrate-based H2 storage," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016726
    DOI: 10.1016/j.apenergy.2024.124289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    3. Cai, Jing & Tao, Yuan-Qing & von Solms, Nicolas & Xu, Chun-Gang & Chen, Zhao-Yang & Li, Xiao-Sen, 2019. "Experimental studies on hydrogen hydrate with tetrahydrofuran by differential scanning calorimeter and in-situ Raman," Applied Energy, Elsevier, vol. 243(C), pages 1-9.
    4. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    5. Kong, Yaning & Yu, Honglin & Liu, Mengqi & Zhang, Guodong & Wang, Fei, 2024. "Ultra-rapid formation of mixed H2/DIOX/THF hydrate under low driving force: Important insight for hydrate-based hydrogen storage," Applied Energy, Elsevier, vol. 362(C).
    6. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Yaning & Yu, Honglin & Liu, Mengqi & Zhang, Guodong & Wang, Fei, 2024. "Ultra-rapid formation of mixed H2/DIOX/THF hydrate under low driving force: Important insight for hydrate-based hydrogen storage," Applied Energy, Elsevier, vol. 362(C).
    2. Lee, Wonhyeong & Kim, Min-Kyung & Moon, Seokyoon & Lee, Jae W. & Ahn, Yun-Ho, 2025. "Rapid hydrogen enclathration and unprecedented tuning phenomenon within superabsorbent polymers," Applied Energy, Elsevier, vol. 377(PA).
    3. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    4. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    5. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Self-supporting hydrate template with hydrate seeds and promoter liquids for semi-continuous formation of hydrogen hydrates," Applied Energy, Elsevier, vol. 373(C).
    6. Qureshi, Fazil & Yusuf, Mohammad & Ahmed, Salman & Haq, Moinul & Alraih, Alhafez M. & Hidouri, Tarek & Kamyab, Hesam & Vo, Dai-Viet N. & Ibrahim, Hussameldin, 2024. "Advancements in sorption-based materials for hydrogen storage and utilization: A comprehensive review," Energy, Elsevier, vol. 309(C).
    7. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    8. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    9. Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
    10. Tinku Saikia & Shirish Patil & Abdullah Sultan, 2023. "Hydrogen Hydrate Promoters for Gas Storage—A Review," Energies, MDPI, vol. 16(6), pages 1-17, March.
    11. Zhang, Ye & Bhattacharjee, Gaurav & Dharshini Vijayakumar, Mohana & Linga, Praveen, 2022. "Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter," Applied Energy, Elsevier, vol. 311(C).
    12. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    13. Joshua T. Weissman & Stephen M. Masutani, 2017. "Hydrogen Storage Capacity of Tetrahydrofuran and Tetra- N -Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions," Energies, MDPI, vol. 10(8), pages 1-20, August.
    14. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    15. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    16. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    17. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    19. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.

    More about this item

    Keywords

    Hydrate-based H2 storage; Thermodynamic promoter; Kinetics; Hydrate morphology; Raman spectra; HP μ-DSC;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.