Energy Flexibility and towards Resilience in New and Old Residential Houses in Cold Climates: A Techno-Economic Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
- Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
- Charani Shandiz, Saeid & Foliente, Greg & Rismanchi, Behzad & Wachtel, Amanda & Jeffers, Robert F., 2020. "Resilience framework and metrics for energy master planning of communities," Energy, Elsevier, vol. 203(C).
- Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
- Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
- Hassam ur Rehman & Janne Hirvonen & Juha Jokisalo & Risto Kosonen & Kai Sirén, 2020. "EU Emission Targets of 2050: Costs and CO 2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions," Energies, MDPI, vol. 13(16), pages 1-31, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
- Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
- John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
- Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
- Sonja Salo & Aira Hast & Juha Jokisalo & Risto Kosonen & Sanna Syri & Janne Hirvonen & Kristian Martin, 2019. "The Impact of Optimal Demand Response Control and Thermal Energy Storage on a District Heating System," Energies, MDPI, vol. 12(9), pages 1-19, May.
- Derakhtenjani, Ali Saberi & Athienitis, Andreas K., 2021. "A frequency domain transfer function methodology for thermal characterization and design for energy flexibility of zones with radiant systems," Renewable Energy, Elsevier, vol. 163(C), pages 1033-1045.
- Gallardo, Andres & Berardi, Umberto, 2022. "Evaluation of the energy flexibility potential of radiant ceiling panels with thermal energy storage," Energy, Elsevier, vol. 254(PC).
- Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
- Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
- Sun, Chunhua & Yan, Hao & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2024. "A control strategy considering buildings’ thermal characteristics to mitigate heat supply-demand mismatches in district heating systems," Energy, Elsevier, vol. 307(C).
- Ali Saberi Derakhtenjani & Andreas K. Athienitis, 2021. "Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems," Energies, MDPI, vol. 14(4), pages 1-19, February.
- Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
- Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
- Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
- Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
- Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
- Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
More about this item
Keywords
energy flexibility; energy resilience; thermal energy; energy crisis; energy pricing; Nordic climate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5506-:d:1198580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.