IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5191-d1187760.html
   My bibliography  Save this article

Thermal Management of Short-Range Distribution of Perishable Food Products Using Phase Change Materials in Packaging: Real-Time Field Data Acquisition

Author

Listed:
  • Martim Aguiar

    (Rua Marquês d’Ávila e Bolama, Department of Electroechanical Engineering, Faculty of Engineering, University of Beira Interior, 6201-001 Covilha, Portugal
    C-MAST—Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilha, Portugal)

  • Pedro Dinis Gaspar

    (Rua Marquês d’Ávila e Bolama, Department of Electroechanical Engineering, Faculty of Engineering, University of Beira Interior, 6201-001 Covilha, Portugal
    C-MAST—Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilha, Portugal)

  • Pedro Dinho da Silva

    (Rua Marquês d’Ávila e Bolama, Department of Electroechanical Engineering, Faculty of Engineering, University of Beira Interior, 6201-001 Covilha, Portugal
    C-MAST—Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilha, Portugal)

Abstract

Maintaining a stable temperature is critical in ensuring the longevity of perishable foods, and frequent fluctuations due to short-range distribution conditions can negatively affect this stability. To mitigate these variations, an innovative modular packaging system utilizing phase change materials (PCMs) was employed in the transport and storage of horticultural products. This study’s real-time thermal condition data, collected using a wireless data acquisition system inserted in the packaging, demonstrated the efficacy of PCM in increasing temperature stability within the crates of horticultural products. The field tests conducted over 8 h showed that PCM-equipped packaging boxes exhibited a temperature variation of less than 1 °C, compared to non-PCM boxes, which saw variations up to 3 °C. This marked reduction in temperature fluctuation signifies the potential of PCM in improving thermal and logistics management in food conservation, thus reducing food waste. However, it is essential to implement a system for PCM alveoli reuse to avoid adverse environmental impacts. Future research should focus on the PCM alveoli autonomy and quantity requirements for specific conditions, and integrate sensors to monitor transport dynamics to enhance the understanding of temperature stability in perishable food transportation.

Suggested Citation

  • Martim Aguiar & Pedro Dinis Gaspar & Pedro Dinho da Silva, 2023. "Thermal Management of Short-Range Distribution of Perishable Food Products Using Phase Change Materials in Packaging: Real-Time Field Data Acquisition," Energies, MDPI, vol. 16(13), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5191-:d:1187760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Adhiyaman Ilangovan & João Curto & Pedro D. Gaspar & Pedro D. Silva & Nanci Alves, 2021. "CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design," Energies, MDPI, vol. 14(23), pages 1-14, November.
    3. João Pires Gaspar & Pedro Dinis Gaspar & Pedro Dinho da Silva & Maria Paula Simões & Christophe Espírito Santo, 2018. "Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal)," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    4. Fábio Leitão & Pedro D. Silva & Pedro D. Gaspar & Luís C. Pires & Diana Duarte, 2021. "Experimental Study of Thermal Performance of Different Fruit Packaging Box Designs," Energies, MDPI, vol. 14(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Kwadwo Kale Agyeman & Steven Duret & Denis Flick & Onrawee Laguerre & Jean Moureh, 2023. "Computational Modelling of Airflow and Heat Transfer during Cooling of Stacked Tomatoes: Optimal Crate Design," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Maximilian Lösch & Markus Fallmann & Agnes Poks & Martin Kozek, 2023. "Simulation-Based Sizing of a Secondary Loop Cooling System for a Refrigerated Vehicle," Energies, MDPI, vol. 16(18), pages 1-23, September.
    3. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    4. Adhiyaman Ilangovan & João Curto & Pedro D. Gaspar & Pedro D. Silva & Nanci Alves, 2021. "CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design," Energies, MDPI, vol. 14(23), pages 1-14, November.
    5. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    6. Giacomo Falcone & Teodora Stillitano & Anna Irene De Luca & Giuseppe Di Vita & Nathalie Iofrida & Alfio Strano & Giovanni Gulisano & Biagio Pecorino & Mario D’Amico, 2020. "Energetic and Economic Analyses for Agricultural Management Models: The Calabria PGI Clementine Case Study," Energies, MDPI, vol. 13(5), pages 1-24, March.
    7. Xinyu Meng & Yijian He & Lijuan He & Chenlei Zhao & Lifang Wang & Wenxi You & Jingbo Zhu, 2024. "A Review of the Energy-Saving Potential of Phase Change Material-Based Cascaded Refrigeration Systems in Chinese Food Cold Chain Industry," Energies, MDPI, vol. 17(19), pages 1-28, September.
    8. Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
    9. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5191-:d:1187760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.