IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313657.html
   My bibliography  Save this article

Energy input-output analysis of rice production in Nigeria

Author

Listed:
  • Kosemani, Babajide S.
  • Bamgboye, A. Isaac

Abstract

Energy input-output assessment for crop production processes is becoming increasingly important due to increased energy demand. Efficient use of energy can help achieve an environmentally, economically and socially viable sustainable crop production system now and for the future in general. This paper explores the energy inputs and consumption patterns for rice production system in Nigeria. Energy related data were collected through field surveys, direct measurements, interview with farmers and structured questionnaires for two growing seasons in nine (9) rice farms, comprising of three small, medium and large farms, respectively. Energy requirement for land preparation, planting, crop maintenance (fertilization and weed control), threshing, and harvesting were calculated using standard equations. The average energy input for rice production in small, medium and large farms were 14813, 14543 and 14067 MJ/ha, respectively, while the average yield obtainable were 6695, 7060 and 7364 kg/ha, respectively. There is a significant difference among the three farm categories in respect to input energy and agronomical managements such as transplanting date and land preparation. Energy input in fertilizer application was the highest with 73.80, 75.11 and 76.90% of the total energy input in small, medium and large farm, respectively. The net energy values were 82733, 88321 and 93226 MJ/ha, respectively. Energy ratio in small, medium and large farms were 6.58, 7.07 and 7.62, respectively. Large farms had better energy efficiency due to better management of energy resources. Minimizing input energy through increased level of mechanisation will boost rice production in Nigeria.

Suggested Citation

  • Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313657
    DOI: 10.1016/j.energy.2020.118258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    2. Gerhard Piringer & Laura J. Steinberg, 2006. "Reevaluation of Energy Use in Wheat Production in the United States," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 149-167, January.
    3. Mohammadshirazi, Ahmad & Akram, Asadolah & Rafiee, Shahin & Mousavi Avval, Seyyed Hashem & Bagheri Kalhor, Elnaz, 2012. "An analysis of energy use and relation between energy inputs and yield in tangerine production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4515-4521.
    4. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    5. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    6. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    7. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    8. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    9. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    10. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    11. João Pires Gaspar & Pedro Dinis Gaspar & Pedro Dinho da Silva & Maria Paula Simões & Christophe Espírito Santo, 2018. "Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal)," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    12. Kiyotaka Masuda, 2018. "Energy Efficiency of Intensive Rice Production in Japan: An Application of Data Envelopment Analysis," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Benedek & Tomasz Rokicki & András Szeberényi, 2023. "Bibliometric Evaluation of Energy Efficiency in Agriculture," Energies, MDPI, vol. 16(16), pages 1-27, August.
    2. Jin, Zhaoqiang & Yue, Rui & Ma, Zhenfa & Cheng, Shangheng & Khan, Mohammad Nauman & Nie, Lixiao, 2024. "Effect of water and nitrogen coupling on energy balance and production efficiency in rice production," Energy, Elsevier, vol. 288(C).
    3. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    4. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Elen Presotto & Gabrielli Martinelli & Gabriela Allegretti & Edson Talamini, 2021. "Energy Efficiency, Monetary Costs, and Sustainability of Brazilian Rainfed and Irrigated Rice Cropping Systems," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-14, September.
    6. Fu, Hao & Li, Na & Cheng, Qingyue & Liao, Qin & Nie, Jiangxia & Yin, Huilai & Shu, Chuanhai & Li, Leilei & Wang, Zhonglin & Sun, Yongjian & Chen, Zongkui & Ma, Jun & Zhang, Xiaoli & Li, Liangyu & Yang, 2024. "Energy, environmental, and economic benefits of integrated paddy field farming," Energy, Elsevier, vol. 297(C).
    7. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    8. Hessampour, Reza & Bastani, Aboubakr & Hassani, Mehrdad & Failla, Sabina & Vaverková, Magdalena Daria & Halog, Anthony, 2023. "Joint life cycle assessment and data envelopment analysis for the benchmarking of energy, exergy, environmental effects, and water footprint in the canned apple supply chain," Energy, Elsevier, vol. 278(C).
    9. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
    10. Hosseini, Seyede Tayyebeh & Sharifan, Hossein & Kiani, Alireza & Abyar, Noormohammad & Feyzbakhsh, Mohammad taghi, 2024. "Analysis of energy input-output in direct seeded and transplantation cultivation of rice under different irrigation systems," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torki-Harchegani, Mehdi & Ebrahimi, Rahim & Mahmoodi-Eshkaftaki, Mahmood, 2015. "Almond production in Iran: An analysis of energy use efficiency (2008–2011)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 217-224.
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    3. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    4. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    5. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    6. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    7. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    8. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    9. Bojacá, Carlos Ricardo & Casilimas, Héctor Albeiro & Gil, Rodrigo & Schrevens, Eddie, 2012. "Extending the input–output energy balance methodology in agriculture through cluster analysis," Energy, Elsevier, vol. 47(1), pages 465-470.
    10. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    11. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    13. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    14. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    15. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    16. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    17. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    18. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    19. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    20. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.