IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7990-d691421.html
   My bibliography  Save this article

CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design

Author

Listed:
  • Adhiyaman Ilangovan

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    C-MAST—Center for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal)

  • João Curto

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Pedro D. Gaspar

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    C-MAST—Center for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal)

  • Pedro D. Silva

    (Department of Electromechanical Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    C-MAST—Center for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal)

  • Nanci Alves

    (TJ Moldes, Embra, P.O. BOX 198, 2431-966 Marinha Grande, Portugal)

Abstract

The shelf life of perishable products depends mainly on the conservation of air temperature. Packaging boxes are usually used to accommodate food products during cold storage and transport and/or display. The design of the vent-holes of the packaging box must promote cold airflow and remove the field heat of the produce after harvest at a short time. This study describes the influence of the vent-holes design and its performance during cold storage. The cooling performance of the different packaging boxes is evaluated experimentally and numerically using Computational Fluid Dynamics (CFD). Three new packaging box configurations with the same size but different vent-holes design (size, shape and position) and a reference box are modelled. The transient three-dimensional CFD model predicts the airflow pattern and temperature distribution within the different packaging boxes. The best thermal performance packaging achieved a fruit model temperature 1.5 K to 5 K lower than the other configurations at the end of 8 h of cooling. These predictions allow the development of new packaging box designs that promote the shelf-life extension of perishable products.

Suggested Citation

  • Adhiyaman Ilangovan & João Curto & Pedro D. Gaspar & Pedro D. Silva & Nanci Alves, 2021. "CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design," Energies, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7990-:d:691421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Chun-Jiang & Han, Jia-Wei & Yang, Xin-Ting & Qian, Jian-Ping & Fan, Bei-Lei, 2016. "A review of computational fluid dynamics for forced-air cooling process," Applied Energy, Elsevier, vol. 168(C), pages 314-331.
    2. Fábio Leitão & Pedro D. Silva & Pedro D. Gaspar & Luís C. Pires & Diana Duarte, 2021. "Experimental Study of Thermal Performance of Different Fruit Packaging Box Designs," Energies, MDPI, vol. 14(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Martim Aguiar & Pedro Dinis Gaspar & Pedro Dinho da Silva, 2023. "Thermal Management of Short-Range Distribution of Perishable Food Products Using Phase Change Materials in Packaging: Real-Time Field Data Acquisition," Energies, MDPI, vol. 16(13), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Kwadwo Kale Agyeman & Steven Duret & Denis Flick & Onrawee Laguerre & Jean Moureh, 2023. "Computational Modelling of Airflow and Heat Transfer during Cooling of Stacked Tomatoes: Optimal Crate Design," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    3. Guangjun Yang & Xiaoxiao Li & Li Ding & Fahua Zhu & Zhigang Wang & Sheng Wang & Zhen Xu & Jingxin Xu & Pengxiang Qiu & Zhaobing Guo, 2019. "CFD Simulation of Pollutant Emission in a Natural Draft Dry Cooling Tower with Flue Gas Injection: Comparison between LES and RANS," Energies, MDPI, vol. 12(19), pages 1-21, September.
    4. Ahmad Nasser Eddine & Steven Duret & Jean Moureh, 2022. "Interactions between Package Design, Airflow, Heat and Mass Transfer, and Logistics in Cold Chain Facilities for Horticultural Products," Energies, MDPI, vol. 15(22), pages 1-35, November.
    5. Long Chen & Wenzhi Wang & Jiazheng Li & Zhijun Zhang, 2024. "Numerical Analysis of Air Supply Alternatives for Forced-Air Precooling of Agricultural Produce," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    6. Wu, Wentao & Beretta, Claudio & Cronje, Paul & Hellweg, Stefanie & Defraeye, Thijs, 2019. "Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment," Applied Energy, Elsevier, vol. 254(C).
    7. Fábio Leitão & Pedro D. Silva & Pedro D. Gaspar & Luís C. Pires & Diana Duarte, 2021. "Experimental Study of Thermal Performance of Different Fruit Packaging Box Designs," Energies, MDPI, vol. 14(12), pages 1-13, June.
    8. Chauhan, Amisha & Trembley, Jon & Wrobel, Luiz C. & Jouhara, Hussam, 2019. "Experimental and CFD validation of the thermal performance of a cryogenic batch freezer with the effect of loading," Energy, Elsevier, vol. 171(C), pages 77-94.
    9. Martim Aguiar & Pedro Dinis Gaspar & Pedro Dinho da Silva, 2023. "Thermal Management of Short-Range Distribution of Perishable Food Products Using Phase Change Materials in Packaging: Real-Time Field Data Acquisition," Energies, MDPI, vol. 16(13), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7990-:d:691421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.