IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4542-d1164828.html
   My bibliography  Save this article

Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening

Author

Listed:
  • Hasan Ustun Basaran

    (Department of Naval Architecture and Marine Engineering, Faculty of Naval Architecture and Maritime, Izmir Katip Celebi University, Cigli, 35620 Izmir, Turkey)

Abstract

The exhaust after-treatment (EAT) threshold temperature is a significant concern for highway vehicles to meet the strict emission norms. Particularly at cold engine start and low loads, EAT needs to be improved above 250 °C to reduce the tailpipe emission rates. Conventional strategies such as electrical heating, exhaust throttling, or late fuel injection mostly need a high fuel penalty for fast EAT warmup. The objective of this work is to demonstrate using a numerical model that a combination of the Miller cycle and delayed exhaust valve opening (DEVO) can improve the tradeoff between EAT warmup and fuel consumption penalty. A relatively low-load working condition (1200 RPM speed and 2.5 bar BMEP ) is maintained in the diesel engine model. The Miller cycle via retarded intake valve closure (RIVC) is noticeably effective in increasing exhaust temperature (as high as 55 °C). However, it also dramatically reduces the exhaust flow rate (over 30%) and, thus, is ineffective for rapid EAT warmup. DEVO has the potential to enhance EAT warmup via increased exhaust temperature and increased exhaust flow rate. However, it considerably decreases the brake thermal efficiency (BTE)—by up to 5%—due to high pumping loss in the system. The RIVC + DEVO combined technique can elevate the exhaust temperature above 250 °C with improved fuel consumption—up to 10%—compared to DEVO alone as it requires a relatively lower rise in pumping loss. The combined method is also superior to RIVC alone. Unlike RIVC alone, the RIVC + DEVO combined mode does not need the extreme use of RIVC to increase engine-out temperature above 250 °C and, thus, provides relatively higher heat transfer rates (up to 103%) to the EAT system through a higher exhaust flow rate. The RIVC + DEVO combined method can be technically more difficult to implement compared to other methods. However, it has the potential to maintain accelerated EAT warmup with improved BTE and, thus, can keep emission rates at low levels during cold start and low loads.

Suggested Citation

  • Hasan Ustun Basaran, 2023. "Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening," Energies, MDPI, vol. 16(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4542-:d:1164828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    2. Fanshuo Liu & Bolan Liu & Junwei Zhang & Peng Wan & Ben Li, 2022. "Study on a Novel Variable Valve Timing and Lift Mechanism for a Miller Cycle Diesel Engine," Energies, MDPI, vol. 15(22), pages 1-11, November.
    3. Emmanuelle Soares de Carvalho Freitas & Lílian Lefol Nani Guarieiro & Marcus Vinícius Ivo da Silva & Keize Katiane dos Santos Amparo & Bruna Aparecida Souza Machado & Egidio Teixeira de Almeida Guerre, 2022. "Emission and Performance Evaluation of a Diesel Engine Using Addition of Ethanol to Diesel/Biodiesel Fuel Blend," Energies, MDPI, vol. 15(9), pages 1-12, April.
    4. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
    5. José R. Serrano & Francisco J. Arnau & Jaime Martín & Ángel Auñón, 2020. "Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine," Energies, MDPI, vol. 13(17), pages 1-26, September.
    6. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    2. Monika Andrych-Zalewska & Zdzislaw Chlopek & Jerzy Merkisz & Jacek Pielecha, 2023. "Impact of the Internal Combustion Engine Thermal State during Start-Up on the Exhaust Emissions in the Homologation Test," Energies, MDPI, vol. 16(4), pages 1-16, February.
    3. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    4. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    5. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
    6. Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
    7. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    8. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    9. Bolu, Sencer & Ozgul, Emre & Epguzel, Emre & Gurel, Cetin, 2022. "Use of thermodynamic models for compression ratio and peak firing pressure optimization in heavy-duty diesel engine," Energy, Elsevier, vol. 248(C).
    10. Theodoros C. Zannis & John S. Katsanis & Georgios P. Christopoulos & Elias A. Yfantis & Roussos G. Papagiannakis & Efthimios G. Pariotis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos & Athanas, 2022. "Marine Exhaust Gas Treatment Systems for Compliance with the IMO 2020 Global Sulfur Cap and Tier III NO x Limits: A Review," Energies, MDPI, vol. 15(10), pages 1-49, May.
    11. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Tan, Piqiang & Cui, Bokuan & Duan, Lishuang & Yin, Yifan & Lou, Diming & Hu, Zhiyuan, 2023. "Pressure drop model of DPF considering ash factor at different capture stages," Energy, Elsevier, vol. 283(C).
    13. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Chen, Ying-jie & Tan, Pi-qiang & Duan, Li-shuang & Liu, Yang & Lou, Di-ming & Hu, Zhi-yuan, 2023. "Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration," Energy, Elsevier, vol. 268(C).
    15. Salah A. M. Elmoselhy & Waleed F. Faris & Hesham A. Rakha, 2021. "Validated Analytical Modeling of Diesel Engines Intake Manifold with a Flexible Crankshaft," Energies, MDPI, vol. 14(5), pages 1-20, February.
    16. Gang Wu & Guoda Feng & Yuelin Li & Tao Ling & Xuejun Peng & Zhilai Su & Xiaohuan Zhao, 2024. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches," Energies, MDPI, vol. 17(3), pages 1-32, January.
    17. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    18. George M. Kosmadakis & Constantine D. Rakopoulos, 2019. "A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines," Energies, MDPI, vol. 12(21), pages 1-15, October.
    19. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    20. Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4542-:d:1164828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.