IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4284-d1154184.html
   My bibliography  Save this article

Durability Study of Frequent Dry–Wet Cycle on Proton Exchange Membrane Fuel Cell

Author

Listed:
  • Dan Wang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Xiangyang Da’an Automobile Test Center Limited Corporation, Xiangyang 441022, China)

  • Haitao Min

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Weiyi Sun

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Bin Zeng

    (Xiangyang Da’an Automobile Test Center Limited Corporation, Xiangyang 441022, China)

  • Haiwen Wu

    (China Certification & Accreditation Institute, Beijing 100011, China)

Abstract

Durability is the key issue for the proton exchange membrane fuel cell application and its commercialization. Current research usually uses the accelerated stress test to decrease the experiment time, whereas the performance evolution—especially the internal state evolution—under real use may be different from that under the accelerated stress test. In addition, studies rarely report this kind of durability in real decay scenarios. This paper investigates the seldom-reported impact of dry–wet cycles on durability in terms of open circuit voltage (OCV), inner resistance, and hydrogen crossover current at the condition of 20,000 cycles or the equivalent 400 h, while simultaneously running the test for the same time interval in the control experiment. The mechanical and chemical test is independent. Frequent dry–wet cycles make the OCV decay over 14% compared to 6.9% under the normal decay. Meanwhile, the dry–wet cycle helps to alleviate deterioration in terms of the inner resistance decline (61% vs. 37%) and in terms of the hydrogen crossover current increase (−64% vs. 15%). The inner state evolution is irregular and against common sense. The relationship between the crack, platinum transfer, and the moisture which heals the crack is the potential reason for the above-mentioned phenomena. These findings are beneficial to navigating fuel cell storage.

Suggested Citation

  • Dan Wang & Haitao Min & Weiyi Sun & Bin Zeng & Haiwen Wu, 2023. "Durability Study of Frequent Dry–Wet Cycle on Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(11), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4284-:d:1154184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    3. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
    2. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    3. Cabello González, G.M. & Toharias, Baltasar & Iranzo, Alfredo & Suárez, Christian & Rosa, Felipe, 2023. "Voltage distribution analysis and non-uniformity assessment in a 100 cm2 PEM fuel cell stack," Energy, Elsevier, vol. 282(C).
    4. Yang, Yue & Yuan, Songmei & Liu, Jieyuan & Zhang, Zikang & Lu, Tie, 2024. "Effect of catalyst ink particle size on the structure of the catalyst layer and electrical performance in the process of ultrasonic spray manufacturing PEMFCs," Energy, Elsevier, vol. 294(C).
    5. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    6. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    7. Yu, Zhongshuai & Liu, Fang & Li, Chengzhang, 2023. "Numerical study on effects of hydrogen ejector on PEMFC performances," Energy, Elsevier, vol. 285(C).
    8. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    9. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    10. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    11. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    12. Jia, Fei & Tian, Xiaodi & Liu, Fengfeng & Ye, Junjie & Yang, Chengpeng, 2023. "Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 331(C).
    13. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    14. Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
    15. Wei Li & Jisheng Liu & Pengcheng Fang & Jinxin Cheng, 2021. "A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System," Energies, MDPI, vol. 14(9), pages 1-25, May.
    16. Tang, Xingwang & Zhang, Yujia & Xu, Sichuan, 2023. "Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model," Energy, Elsevier, vol. 283(C).
    17. Ruifeng Guo & Dongfang Chen & Yuehua Li & Wenlong Wu & Song Hu & Xiaoming Xu, 2023. "Anode Nitrogen Concentration Estimation Based on Voltage Variation Characteristics for Proton Exchange Membrane Fuel Cell Stacks," Energies, MDPI, vol. 16(5), pages 1-16, February.
    18. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    19. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    20. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4284-:d:1154184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.