IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp479-486.html
   My bibliography  Save this article

The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement

Author

Listed:
  • Solomon, A.A.
  • Faiman, D.
  • Meron, G.

Abstract

Recently we reported that PV penetration of up to approximately 90% of the annual demand of the Israeli electricity grid could be achieved using properly sized storage and an appropriate operation strategy. Such a grid clearly requires some conventional generating capacity to be available in order to serve as backup at times when the PV-storage combination alone fails to meet the demand. In the present continuation of that study, we evaluate the largest conventional capacity that would have been required during the one year of data employed for our simulations. For that year, 2006, the required backup capacity for a grid with flexibility ff=0.8 and ff=1 would have been 7.5GW and 6.6GW, respectively. This is significantly less than the 10.5GW of generating capacity that the Israel Electric Corporation operated that year. Our finding emphasizes the fact that a full economic optimization of storage must be based primarily on the engineering-aspects of storage design and use.

Suggested Citation

  • Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:479-486
    DOI: 10.1016/j.enpol.2012.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "An energy-based evaluation of the matching possibilities of very large photovoltaic plants to the electricity grid: Israel as a case study," Energy Policy, Elsevier, vol. 38(10), pages 5457-5468, October.
    2. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    3. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "The effects on grid matching and ramping requirements, of single and distributed PV systems employing various fixed and sun-tracking technologies," Energy Policy, Elsevier, vol. 38(10), pages 5469-5481, October.
    4. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    5. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    6. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Properties and uses of storage for enhancing the grid penetration of very large photovoltaic systems," Energy Policy, Elsevier, vol. 38(9), pages 5208-5222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wierzbowski, Michal & Filipiak, Izabela, 2017. "Enhanced operational reserve as a tool for development of optimal energy mix," Energy Policy, Elsevier, vol. 102(C), pages 602-615.
    2. Biber, Albert & Wieland, Christoph & Spliethoff, Hartmut, 2022. "Economic analysis of energy storages integrated into combined-cycle power plants," Energy Policy, Elsevier, vol. 170(C).
    3. Mittelman, Gur & Eran, Ronen & Zhivin, Lev & Eisenhändler, Ohad & Luzon, Yossi & Tshuva, Moshe, 2023. "The potential of renewable electricity in isolated grids: The case of Israel in 2050," Applied Energy, Elsevier, vol. 349(C).
    4. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    5. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    6. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    7. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2018. "Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries," Energy, Elsevier, vol. 155(C), pages 87-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    2. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    3. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    5. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    6. Orioli, Aldo & Di Gangi, Alessandra, 2013. "Load mismatch of grid-connected photovoltaic systems: Review of the effects and analysis in an urban context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 13-28.
    7. Mittelman, Gur & Eran, Ronen & Zhivin, Lev & Eisenhändler, Ohad & Luzon, Yossi & Tshuva, Moshe, 2023. "The potential of renewable electricity in isolated grids: The case of Israel in 2050," Applied Energy, Elsevier, vol. 349(C).
    8. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    9. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2018. "Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries," Energy, Elsevier, vol. 155(C), pages 87-104.
    10. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    11. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    12. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    13. Richardson, David B. & Harvey, L.D.D., 2015. "Strategies for correlating solar PV array production with electricity demand," Renewable Energy, Elsevier, vol. 76(C), pages 432-440.
    14. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    15. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    16. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    17. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    18. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    19. Zack Norwood & Joel Goop & Mikael Odenberger, 2017. "The Future of the European Electricity Grid Is Bright: Cost Minimizing Optimization Shows Solar with Storage as Dominant Technologies to Meet European Emissions Targets to 2050," Energies, MDPI, vol. 10(12), pages 1-31, December.
    20. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:479-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.