IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2129-d351161.html
   My bibliography  Save this article

Distribution Power Loss Reduction of Standalone DC Microgrids Using Adaptive Differential Evolution-Based Control for Distributed Battery Systems

Author

Listed:
  • Junli Deng

    (College of Informatics, Huazhong Agricultural University, Wuhan 430000, China)

  • Yuan Mao

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Yun Yang

    (Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China)

Abstract

With high penetrations of renewable energy sources (RES), distributed battery systems (DBS) are widely adopted in standalone DC microgrids to stabilize the bus voltages by balancing the active power. This paper presents an Adaptive Differential Evolution (ADE)-based hierarchical control for DBS to achieve online distribution power loss mitigation as well as bus voltage regulations in standalone DC microgrids. The hierarchical control comprises two layers, i.e., ADE for the secondary layer and local proportional-integral (PI) control for the primary layer. The secondary layer control provides the bus voltage references for the primary control by optimizing the fitness function, which contains the parameters of the bus voltage deviations and the power loss on the distribution lines. Simultaneously, the state-of-charge (SoC) of the battery packs are controlled by local controllers to prevent over-charge and deep-discharge. Case studies using a Real-Time Digital Simulator (RTDS) validate that the proposed ADE-based hierarchical control can effectively reduce the distribution power loss and regulate the bus voltages within the tolerances in DC microgrids.

Suggested Citation

  • Junli Deng & Yuan Mao & Yun Yang, 2020. "Distribution Power Loss Reduction of Standalone DC Microgrids Using Adaptive Differential Evolution-Based Control for Distributed Battery Systems," Energies, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2129-:d:351161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    2. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    2. Hu Xiong & Bin Xiang & Yuan Mao, 2023. "An Auxiliary Passive Circuit and Control Design for Wireless Power Transfer Systems in DC Microgrids with Zero Voltage Switching and Accurate Output Regulations," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    4. Mahmoud Elshenawy & Ashraf Fahmy & Adel Elsamahy & Shaimaa A. Kandil & Helmy M. El Zoghby, 2022. "Optimal Power Management of Interconnected Microgrids Using Virtual Inertia Control Technique," Energies, MDPI, vol. 15(19), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    3. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    4. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    5. Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
    6. Lennart Petersen & Florin Iov & German Claudio Tarnowski & Vahan Gevorgian & Przemyslaw Koralewicz & Daniel-Ioan Stroe, 2019. "Validating Performance Models for Hybrid Power Plant Control Assessment," Energies, MDPI, vol. 12(22), pages 1-26, November.
    7. Ehab Issa El-Sayed & Salah K. ElSayed & Mohammad Alsharef, 2024. "Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    8. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    9. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    10. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    11. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    12. Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    13. Trieste, S. & Hmam, S. & Olivier, J.-C. & Bourguet, S. & Loron, L., 2015. "Techno-economic optimization of a supercapacitor-based energy storage unit chain: Application on the first quick charge plug-in ferry," Applied Energy, Elsevier, vol. 153(C), pages 3-14.
    14. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Edgar Ojeda Camargo & John E. Candelo-Becerra & Alcides Santander Mercado, 2019. "Lexicographic Multi-objective Optimisation of Hybrid Power Generation Systems for Communities in Non-Interconnected Zones," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 205-217.
    16. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    18. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    19. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    20. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2129-:d:351161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.