IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4258-d1153194.html
   My bibliography  Save this article

Study on CO 2 Huff-n-Puff Development Rule of Horizontal Wells in Heavy Oil Reservoir by Taking Liuguanzhuang Oilfield in Dagang as an Example

Author

Listed:
  • Zhenhua Xu

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Lianwu Zhou

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Shuiping Ma

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Jianxun Qin

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Xiaodi Huang

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Bo Han

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Longqing Yang

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Yun Luo

    (The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China)

  • Pengcheng Liu

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

Abstract

Heavy oil reservoirs are often characterized by high viscosity and poor mobility, which is more complex with the presence of bottom water. The conventional vertical well development method has low oil recovery efficiency and limited controlled reserves of a single well. In addition, water cut can increase dramatically when the edge-bottom water breaks through. Horizontal well and CO 2 huff-n-puff is an effective alternative development model for heavy oil reservoirs. This development method makes efficient use of CO 2 and accords with the “Carbon Capture, Utilization, and Storage (CCUS)”. The horizontal well can increase the drainage area. The dissolution of CO 2 improves the mobility of crude oil and increases formation energy. In this paper, we established numerical simulation models based on the Liuguanzhuang oilfield in Dagang. The characteristics and producing rules of the horizontal well and CO 2 huff-n-puff development in the heavy oil reservoir were studied. The results show that the production characteristics of horizontal well and CO 2 huff-n-puff were similar to Steam-Assisted Gravity Drainage (SAGD). CO 2 forms a viscosity reduction area above the horizontal well and the heavy oil flows into the wellbore due to gravity after viscosity reduction. The CO 2 huff-n-puff can effectively enhance the production area of horizontal wells compared with the depletion development. However, the improvement in the production area gradually decreased as CO 2 huff-n-puff cycles continued. There was a boundary of production area against the horizontal well, with the main production of heavy oil occurring at the upper and either end of the horizontal well. The CO 2 huff-n-puff has a restraining effect on the edge-bottom water, which is confirmed via the proposed theoretical model.

Suggested Citation

  • Zhenhua Xu & Lianwu Zhou & Shuiping Ma & Jianxun Qin & Xiaodi Huang & Bo Han & Longqing Yang & Yun Luo & Pengcheng Liu, 2023. "Study on CO 2 Huff-n-Puff Development Rule of Horizontal Wells in Heavy Oil Reservoir by Taking Liuguanzhuang Oilfield in Dagang as an Example," Energies, MDPI, vol. 16(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4258-:d:1153194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengdong Lei & Yishan Liu & Rui Wang & Lei Li & Yuqi Liu & Yuanqing Zhang, 2022. "A Microfluidic Experiment on CO 2 Injection for Enhanced Oil Recovery in a Shale Oil Reservoir with High Temperature and Pressure," Energies, MDPI, vol. 15(24), pages 1-15, December.
    2. Zhou, Xiang & Li, Xiuluan & Shen, Dehuang & Shi, Lanxiang & Zhang, Zhien & Sun, Xinge & Jiang, Qi, 2022. "CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study," Energy, Elsevier, vol. 239(PB).
    3. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    4. Ren, Bo & Male, Frank & Duncan, Ian J., 2022. "Economic analysis of CCUS: Accelerated development for CO2 EOR and storage in residual oil zones under the context of 45Q tax credit," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    2. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    3. Zhou, Xiang & Li, Xiuluan & Shen, Dehuang & Shi, Lanxiang & Zhang, Zhien & Sun, Xinge & Jiang, Qi, 2022. "CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study," Energy, Elsevier, vol. 239(PB).
    4. Ganggang Hou & Xiaoli Ma & Wenyue Zhao & Pengxiang Diwu & Tongjing Liu & Jirui Hou, 2021. "Synergistic Modes and Enhanced Oil Recovery Mechanism of CO 2 Synergistic Huff and Puff," Energies, MDPI, vol. 14(12), pages 1-30, June.
    5. Wu, Qianhui & Ding, Lei & Zhao, Lun & Alhashboul, Almohannad A. & Almajid, Muhammad M. & Patil, Pramod & Zhao, Wenqi & Fan, Zifei, 2024. "CO2 soluble surfactants for carbon storage in carbonate saline aquifers with achievable injectivity: Implications from the continuous CO2 injection study," Energy, Elsevier, vol. 290(C).
    6. Nan Wei & Changjun Li & Jiehao Duan & Jinyuan Liu & Fanhua Zeng, 2019. "Daily Natural Gas Load Forecasting Based on a Hybrid Deep Learning Model," Energies, MDPI, vol. 12(2), pages 1-15, January.
    7. Kang Ma & Hanqiao Jiang & Junjian Li & Rongda Zhang & Kangqi Shen & Yu Zhou, 2020. "A Novel Assisted Gas–Oil Countercurrent EOR Technique for Attic Oil in Fault-Block Reservoirs," Energies, MDPI, vol. 13(2), pages 1-15, January.
    8. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
    9. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    10. Long, Keji & Tang, Yong & He, Youwei & Luo, Yulong & Hong, Yinghe & Sun, Yu & Rui, Zhenhua, 2024. "Full-cycle enhancing condensate recovery-underground gas storage by integrating cyclic gas flooding and storage from gas condensate reservoirs," Energy, Elsevier, vol. 293(C).
    11. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    12. Evgeny Shilov & Alexey Cheremisin & Kirill Maksakov & Sergey Kharlanov, 2019. "Huff-n-Puff Experimental Studies of CO 2 with Heavy Oil," Energies, MDPI, vol. 12(22), pages 1-15, November.
    13. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    14. Ning Lin & Liying Xu, 2024. "Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects," Energies, MDPI, vol. 17(7), pages 1-15, March.
    15. Hou, Lei & Elsworth, Derek & Zhang, Lei & Gong, Peibin & Liu, Honglei, 2024. "Recalibration of CO2 storage in shale: prospective and contingent storage resources, and capacity," Energy, Elsevier, vol. 290(C).
    16. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    17. Aaditya Khanal & Md Fahim Shahriar, 2023. "Optimization of CO 2 Huff-n-Puff in Unconventional Reservoirs with a Focus on Pore Confinement Effects, Fluid Types, and Completion Parameters," Energies, MDPI, vol. 16(5), pages 1-23, February.
    18. Min Thura Mon & Roengchai Tansuchat & Woraphon Yamaka, 2024. "CCUS Technology and Carbon Emissions: Evidence from the United States," Energies, MDPI, vol. 17(7), pages 1-18, April.
    19. Lin, Zeyu & Lu, Xinqian & Wang, Xiaoyan & Chang, Yuanhao & Kang, Kai & Zeng, Fanhua, 2024. "Effect of N2 impurity on CO2-based cyclic solvent injection process in enhancing heavy oil recovery and CO2 storage," Energy, Elsevier, vol. 290(C).
    20. Kasala, Erasto E. & Wang, Jinjie & Lwazi, Hussein M. & Nyakilla, Edwin E. & Kibonye, John S., 2024. "The influence of hydraulic fracture and reservoir parameters on the storage of CO2 and enhancing CH4 recovery in Yanchang formation," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4258-:d:1153194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.