IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224032055.html
   My bibliography  Save this article

Performance improvement and multi-objective optimization of a two-stage and dual-temperature ejector auto-cascade refrigeration cycle driven by the waste heat

Author

Listed:
  • Ye, Kai
  • Liang, Youcai
  • Zhu, Yan
  • Ling, Xunjie
  • Wu, Jintao
  • Lu, Jidong

Abstract

This paper presents a two-stage and dual-temperature ejector auto-cascade refrigeration cycle (TEARC) driven by the waste hot water and low-pressure exhaust steam in chemical plants. In this cycle, a throttle valve is provided between the condenser outlet and separator inlet to regulate the composition and mass flow ratio of mixture refrigerant in the two evaporators. The specific enthalpies of refrigerant at the low-temperature (LT) evaporator and medium-temperature (MT) evaporator inlet are respectively reduced via the evaporative condenser and separator, leading to an enhancement in cooling capacity. Energy, exergy, and economic (3E) analyses are conducted to compare the performance between the TEARC and the basic two-stage and dual-temperature ejector refrigeration cycle (BTERC). At the basic operating condition, the TEARC has enhancements of 9.13 % and 9.95 % in COP and exergy efficiency than those of the BTERC. According to the multi-objective optimization results, it indicates that the TEARC's COP, exergy efficiency, and levelized cost of cooling are respectively improved by 8.93 % and 5.67 % and reduced by 1.22 % compared to the BTERC at optimum operating conditions. The simulation results of the proposed cycle reveal a significant performance improvement and the potential for application in waste heat-driven refrigeration.

Suggested Citation

  • Ye, Kai & Liang, Youcai & Zhu, Yan & Ling, Xunjie & Wu, Jintao & Lu, Jidong, 2024. "Performance improvement and multi-objective optimization of a two-stage and dual-temperature ejector auto-cascade refrigeration cycle driven by the waste heat," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032055
    DOI: 10.1016/j.energy.2024.133429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.