IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4106-d1147602.html
   My bibliography  Save this article

Development of a Scalable MMC Pulsed Power Supply through HIL Methodology

Author

Listed:
  • Cristina Terlizzi

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Antonio Magnanimo

    (Max-Planck-Institute for Plasma Physics, 85748 Garching, Germany)

  • Francesco Santoro

    (Consorzio RFX, 35127 Padova, Italy)

  • Stefano Bifaretti

    (Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

Nuclear fusion experiments are becoming one of the most interesting focuses of research, given the hope of generating programmable, safe, and green energy. Among them, ASDEX (axially symmetric divertor experiment) upgrade has been operating at the Max Planck Institute for Plasma Physics (IPP) research center since 1991. To ignite and confine the plasma, several coils must be supplied through controllable high-current pulsed power supplies. The toroidal field magnets are here considered and a modular multilevel converter (MMC)-like system was designed and tested thanks to a small-scale prototype in previous works. The MMC-like topology, consisting of full-bridge submodules (SMs) with IGBTs and supercapacitor and exploitable also for other industrial applications, was chosen because of its modularity, redundancy, fault tolerance, and large amount of stored energy. The prototype, made of four SMs, was necessary to highlight critical key points in the design process. However, its scalability must be further tested before building a full-scale power supply, meant to reach almost 2400 SMs to guarantee the energy required by the load. This paper aims at validating hardware-in-the-loop (a powerful, safe, and relatively inexpensive real-time simulation environment that enables testing with real control boards) as a useful technology for power supply scalability studies and not only for control strategy tests. The results obtained previously from the prototype will allow us to finally increase the number of SMs and test the MMC-like scalability.

Suggested Citation

  • Cristina Terlizzi & Antonio Magnanimo & Francesco Santoro & Stefano Bifaretti, 2023. "Development of a Scalable MMC Pulsed Power Supply through HIL Methodology," Energies, MDPI, vol. 16(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4106-:d:1147602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    3. Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
    4. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    5. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    6. Fernando Martinez-Rodrigo & Dionisio Ramirez & Santiago de Pablo & Luis Carlos Herrero-de Lucas, 2021. "Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation," Energies, MDPI, vol. 14(9), pages 1-21, May.
    7. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1, February.
    8. Victor Daniel Reyes Dreke & Mircea Lazar, 2022. "Long-Horizon Nonlinear Model Predictive Control of Modular Multilevel Converters," Energies, MDPI, vol. 15(4), pages 1-22, February.
    9. Mario Lopez & Hendrik Fehr & Marcelo A. Perez & Albrecht Gensior, 2021. "Pareto Frontier of the Arm Energy Ripple and the Conduction Losses of a Modular Multilevel Converter," Energies, MDPI, vol. 14(2), pages 1-20, January.
    10. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    11. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    12. Davide De Simone & Luigi Piegari, 2019. "Integration of Stationary Batteries for Fast Charge EV Charging Stations," Energies, MDPI, vol. 12(24), pages 1-11, December.
    13. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    14. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Waqar Uddin & Tiago D. C. Busarello & Kamran Zeb & Muhammad Adil Khan & Anil Kumar Yedluri & Hee-Je Kim, 2021. "Control Strategy Based on Arm-Level Control for Output and Circulating Current of MMC in Stationary Reference Frame," Energies, MDPI, vol. 14(14), pages 1-20, July.
    16. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    17. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    18. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    19. José Gabriel Oliveira Pinto & Rui Macedo & Vitor Monteiro & Luis Barros & Tiago Sousa & João L. Afonso, 2018. "Single-Phase Shunt Active Power Filter Based on a 5-Level Converter Topology," Energies, MDPI, vol. 11(4), pages 1-26, April.
    20. Seyed Mehdi Hakimi & Amin Hajizadeh, 2018. "Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter," Energies, MDPI, vol. 11(10), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4106-:d:1147602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.