IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3589-d576173.html
   My bibliography  Save this article

Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm

Author

Listed:
  • Corentin Darbas

    (IETR UMR CNRS 6164, Université de Rennes 1, Campus Beaulieu, 263 ave. Général Leclerc, CEDEX, 35042 Rennes, France
    IREENA Université de Nantes, (CRTT), B.P. 406, 37 Bd de l’Université, CEDEX, 44602 Saint-Nazaire, France)

  • Jean-Christophe Olivier

    (IREENA Université de Nantes, (CRTT), B.P. 406, 37 Bd de l’Université, CEDEX, 44602 Saint-Nazaire, France)

  • Nicolas Ginot

    (IETR UMR CNRS 6164, Université de Rennes 1, Campus Beaulieu, 263 ave. Général Leclerc, CEDEX, 35042 Rennes, France)

  • Frédéric Poitiers

    (IETR UMR CNRS 6164, Université de Rennes 1, Campus Beaulieu, 263 ave. Général Leclerc, CEDEX, 35042 Rennes, France)

  • Christophe Batard

    (IETR UMR CNRS 6164, Université de Rennes 1, Campus Beaulieu, 263 ave. Général Leclerc, CEDEX, 35042 Rennes, France)

Abstract

Recent Modular Multilevel Converter (MMC) topology allows for drastic improvements in power electronic conversion such as higher energy quality, lower power semiconductors electrical stress, decreased Electro-Magnetic Interferences (EMI), and reduced switching losses. MMC is widely used in High Voltage Direct-Current (HVDC) transmissions as it offers, theoretically, no voltage limit. However, its control electronic structure is not modular itself. Especially, the insulation voltage between the submodule gate drivers’ primaries and secondaries depends on the number of submodules. The converter voltage levels cannot be increased without designing all gate driver isolations again. To solve that issue, the novel concept of distributed galvanic insulation is introduced for multilevel converters. The submodule’s gate drivers are daisy-chained, which naturally reduces the insulation voltage to the submodule capacitor voltage, regardless of the number of submodules. The MMC becomes truly modular as the number of submodules can be increased without impacting on the previous control electronic circuit. Such an innovative control structure weakens the link between the main control unit and the gate drivers. This inherent structural problem can be solved through the use of Smart-Gate Drivers (SGD), as they are often equipped with fast and bidirectional communication channels, while highly increasing the converter reliability. The innovation proposed in that work is the involvement of smart gate drivers in the distributed galvanic insulation-based MMC control and monitoring. First, the numerous benefits of smart gate drivers are discussed. Then, an innovative Voltage Balancing Algorithm directly integrated on the chained gate drivers is proposed and detailed. It features a tunable parameter, offering a trade-off between accurate voltage balancing and execution time. The proposed embedded algorithm features a low execution time due to simultaneous voltage comparisons. Such an algorithm is executed by the gate drivers themselves, relieving the main control unit in an original decentralized control scheme. A simulation model of a multi-megawatts three-phase grid-tied MMC inverter is realized, allowing validation of the proposed algorithm. Matlab/Simulink logic blocs allow us to simulate a typical CPLD/FPGA component, often embedded on smart gate drivers. The converter with the proposed embedded algorithm is simulated in steady-state and during load impact. The controlled delay and slew rate inferred by the algorithm do not disturb the converter behavior, allowing its conceptual validation.

Suggested Citation

  • Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3589-:d:576173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Liu & Zetao Li & Xiaoliu Yang, 2020. "A Universal Mathematical Model of Modular Multilevel Converter with Half-Bridge," Energies, MDPI, vol. 13(17), pages 1-18, August.
    2. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    3. Ming Liu & Zetao Li & Xiaoliu Yang, 2020. "Tracking Control of Modular Multilevel Converter Based on Linear Matrix Inequality without Coordinate Transformation," Energies, MDPI, vol. 13(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong Zhao & Siyu Jiang & Yu Xie & Longze Wang & Delong Zhang & Yiyi Ma & Yan Zhang & Meicheng Li, 2022. "Analysis of Fault and Protection Strategy of a Converter Station in MMC-HVDC System," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Lopez & Hendrik Fehr & Marcelo A. Perez & Albrecht Gensior, 2021. "Pareto Frontier of the Arm Energy Ripple and the Conduction Losses of a Modular Multilevel Converter," Energies, MDPI, vol. 14(2), pages 1-20, January.
    2. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    3. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    4. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    5. Concettina Buccella & Maria Gabriella Cimoroni & Carlo Cecati, 2020. "General Formula for SHE Problem Solution," Energies, MDPI, vol. 13(14), pages 1-16, July.
    6. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    7. Fernando Martinez-Rodrigo & Dionisio Ramirez & Santiago de Pablo & Luis Carlos Herrero-de Lucas, 2021. "Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation," Energies, MDPI, vol. 14(9), pages 1-21, May.
    8. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Roberto Zanasi & Davide Tebaldi, 2021. "Modeling Control and Robustness Assessment of Multilevel Flying-Capacitor Converters," Energies, MDPI, vol. 14(7), pages 1-40, March.
    10. Victor Daniel Reyes Dreke & Mircea Lazar, 2022. "Long-Horizon Nonlinear Model Predictive Control of Modular Multilevel Converters," Energies, MDPI, vol. 15(4), pages 1-22, February.
    11. Cristina Terlizzi & Antonio Magnanimo & Francesco Santoro & Stefano Bifaretti, 2023. "Development of a Scalable MMC Pulsed Power Supply through HIL Methodology," Energies, MDPI, vol. 16(10), pages 1-19, May.
    12. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    13. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    14. Chang-Hwan Park & In-Kyo Seo & Belete Belayneh Negesse & Jong-su Yoon & Jang-Mok Kim, 2021. "A Study on Common Mode Voltage Reduction Strategies According to Modulation Methods in Modular Multilevel Converter," Energies, MDPI, vol. 14(6), pages 1-21, March.
    15. Ming Liu & Zetao Li & Xiaoliu Yang, 2020. "A Universal Mathematical Model of Modular Multilevel Converter with Half-Bridge," Energies, MDPI, vol. 13(17), pages 1-18, August.
    16. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    17. Davide De Simone & Luigi Piegari, 2019. "Integration of Stationary Batteries for Fast Charge EV Charging Stations," Energies, MDPI, vol. 12(24), pages 1-11, December.
    18. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    19. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    20. Waqar Uddin & Tiago D. C. Busarello & Kamran Zeb & Muhammad Adil Khan & Anil Kumar Yedluri & Hee-Je Kim, 2021. "Control Strategy Based on Arm-Level Control for Output and Circulating Current of MMC in Stationary Reference Frame," Energies, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3589-:d:576173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.