IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4021-d1144190.html
   My bibliography  Save this article

Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study

Author

Listed:
  • Anna Barwińska-Małajowicz

    (Department of Economics and International Economic Relations, Institute of Economics and Finance, University of Rzeszów, 35-601 Rzeszow, Poland)

  • Radosław Pyrek

    (Department of Economics and International Economic Relations, Institute of Economics and Finance, University of Rzeszów, 35-601 Rzeszow, Poland)

  • Krzysztof Szczotka

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Jakub Szymiczek

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Teresa Piecuch

    (Department of Enterprise Management, Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

Abstract

Economical and efficient use of energy is promoted around the world as a model of conscious care for the environment in which we live. A mere change of habits in the use of energy can reduce its costs by 5% to 15%, and investments in energy-saving technologies can pay for themselves after just a few years. This case study shows how significant steps can be taken in saving energy in the building of public utility buildings through deep thermomodernization using renewable energy sources—compressor heat pumps and photovoltaics. The article presents a comprehensive thermomodernization of a school building made according to Polish regulations. A detailed description of the tested object is given, and the calculation procedure is described. Next, the optimal investment variant and ex post analysis are described. The implementation of these projects significantly improved the energy efficiency of the building and generated final energy savings of 80%, which will significantly reduce the school’s operating costs. Thanks to the applied improvements, it was possible to save 72.30% of thermal energy in the building, which directly translates into lowering the building’s operating costs. The improvement of energy efficiency indicators ranges from 66% for usable energy to almost 85% for non-renewable primary energy. Furthermore, by reducing the demand for energy used in the building by nearly 74%, we see a reduction in CO 2 emissions. The methods used were desk research and an extended case study of Poland, a country facing a number of problems related to energy prices during the energy crisis. In this article, we identify the challenges faced by Poland due to its geopolitical situation, and the solutions introduced to the difficult situation in the energy market come in the form of the thermomodernization of buildings. It was on this basis that Poland was selected as a case study.

Suggested Citation

  • Anna Barwińska-Małajowicz & Radosław Pyrek & Krzysztof Szczotka & Jakub Szymiczek & Teresa Piecuch, 2023. "Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study," Energies, MDPI, vol. 16(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4021-:d:1144190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saunders, Harry & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgubta, Shyamasree & de la Rue du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Qiang Lin, Bo &, 2020. "Energy Efficiency: What has it Delivered in the Last 40 Years?," FCN Working Papers 16/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Apr 2021.
    2. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Bader Alshuraiaan, 2021. "Renewable Energy Technologies for Energy Efficient Buildings: The Case of Kuwait," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    5. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    7. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    8. Felice, Alex & Rakocevic, Lucija & Peeters, Leen & Messagie, Maarten & Coosemans, Thierry & Ramirez Camargo, Luis, 2022. "Renewable energy communities: Do they have a business case in Flanders?," Applied Energy, Elsevier, vol. 322(C).
    9. Rafał Blazy & Jakub Błachut & Agnieszka Ciepiela & Rita Łabuz & Renata Papież, 2021. "Thermal Modernization Cost and the Potential Ecological Effect—Scenario Analysis for Thermal Modernization in Southern Poland," Energies, MDPI, vol. 14(8), pages 1-16, April.
    10. Iwona Bąk & Anna Barwińska-Małajowicz & Grażyna Wolska & Paweł Walawender & Paweł Hydzik, 2021. "Is the European Union Making Progress on Energy Decarbonisation While Moving towards Sustainable Development?," Energies, MDPI, vol. 14(13), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    2. Marta Skiba & Maria Mrówczyńska & Małgorzata Sztubecka & Alicja Maciejko & Natalia Rzeszowska, 2023. "The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal," Energies, MDPI, vol. 16(17), pages 1-26, August.
    3. Ashraf Mishrif & Asharul Khan, 2024. "Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman," Energies, MDPI, vol. 17(16), pages 1-22, August.
    4. Mariusz Tomczyk & Henryk Wojtaszek & Małgorzata Chackiewicz & Małgorzata Orłowska, 2023. "Electromobility and Renewable Energy Sources: Comparison of Attitudes and Infrastructure in Poland and Germany," Energies, MDPI, vol. 16(24), pages 1-34, December.
    5. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    6. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.
    7. Stanisław Bodziacki & Mateusz Malinowski & Stanisław Famielec & Anna Krakowiak-Bal & Zuzanna Basak & Maria Łukasiewicz & Katarzyna Wolny-Koładka & Atılgan Atılgan & Ozan Artun, 2024. "Environmental Assessment of Energy System Upgrades in Public Buildings," Energies, MDPI, vol. 17(13), pages 1-18, July.
    8. Piotr Michalak, 2023. "Simulation of a Building with Hourly and Daily Varying Ventilation Flow: An Application of the Simulink S-Function," Energies, MDPI, vol. 16(24), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.
    2. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    3. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    4. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    5. Roger Fouquet & Ralph Hippe, 2022. "Twin Transitions of Decarbonisation and Digitalisation: A Historical Perspective on Energy and Information in European Economies," Working Papers 08-22, Association Française de Cliométrie (AFC).
    6. Heesen, Florian & Madlener, Reinhard, 2021. "Revisiting heat energy consumption modeling: Household production theory applied to field experimental data," Energy Policy, Elsevier, vol. 158(C).
    7. Aneta Karasek & Barbara Fura & Magdalena Zajączkowska, 2023. "Assessment of Energy Efficiency in the European Union Countries in 2013 and 2020," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Robert Dylewski & Janusz Adamczyk, 2022. "Building Energy: Economics and Environment," Energies, MDPI, vol. 15(20), pages 1-2, October.
    9. Iwona Bąk & Małgorzata Tarczyńska-Łuniewska & Anna Barwińska-Małajowicz & Paweł Hydzik & Dariusz Kusz, 2022. "Is Energy Use in the EU Countries Moving toward Sustainable Development?," Energies, MDPI, vol. 15(16), pages 1-26, August.
    10. Beata Sadowska & Joanna Piotrowska-Woroniak & Grzegorz Woroniak & Wiesław Sarosiek, 2022. "Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study," Energies, MDPI, vol. 15(8), pages 1-31, April.
    11. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    12. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    13. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    14. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    15. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    16. Wenxuan Ma, 2022. "Exploring the Role of Educational Human Capital and Green Finance in Total-Factor Energy Efficiency in the Context of Sustainable Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    17. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    18. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    19. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4021-:d:1144190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.