IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p3993-d1142857.html
   My bibliography  Save this article

Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR

Author

Listed:
  • Chunling Wu

    (School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China)

  • Juncheng Fu

    (School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China)

  • Xinrong Huang

    (School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China)

  • Xianfeng Xu

    (School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China)

  • Jinhao Meng

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Accurate estimation of the state-of-health (SOH) of lithium-ion batteries is a crucial reference for energy management of battery packs for electric vehicles. It is of great significance in ensuring safe and reliable battery operation while reducing maintenance costs of the battery system. To eliminate the nonlinear effects caused by factors such as capacity regeneration on the SOH sequence of batteries and improve the prediction accuracy and stability of lithium-ion battery SOH, a prediction model based on Variational Modal Decomposition (VMD) and Dung Beetle Optimization -Support Vector Regression (DBO-SVR) is proposed. Firstly, the VMD algorithm is used to decompose the SOH sequence of lithium-ion batteries into a series of stationary mode components. Then, each mode component is treated as a separate subsequence and modeled and predicted directly using SVR. To address the problem of difficult parameter selection for SVR, the DBO algorithm is used to optimize the parameters of the SVR model before training. Finally, the predicted values of each subsequence are added and reconstructed to obtain the final SOH prediction. In order to verify the effectiveness of the proposed method, the VMD-DBO-SVR model was compared with SVR, Empirical Mode Decomposition-Support Vector Regression (EMD-SVR), and VMD-SVR methods for SOH prediction of batteries based on the NASA dataset. Experimental results show that the proposed model has higher prediction accuracy and fitting degree, with prediction errors all within 1% and better robustness.

Suggested Citation

  • Chunling Wu & Juncheng Fu & Xinrong Huang & Xianfeng Xu & Jinhao Meng, 2023. "Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR," Energies, MDPI, vol. 16(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3993-:d:1142857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/3993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/3993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).
    2. Bo Pang & Li Chen & Zuomin Dong, 2022. "Data-Driven Degradation Modeling and SOH Prediction of Li-Ion Batteries," Energies, MDPI, vol. 15(15), pages 1-12, August.
    3. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    4. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    5. Shuo Sun & Junzhong Sun & Zongliang Wang & Zhiyong Zhou & Wei Cai, 2022. "Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism," Energies, MDPI, vol. 15(12), pages 1-17, June.
    6. Yao, Fang & He, Wenxuan & Wu, Youxi & Ding, Fei & Meng, Defang, 2022. "Remaining useful life prediction of lithium-ion batteries using a hybrid model," Energy, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Guo & Guangshan Huang & Wencan Zhang & An Wen & Taotao Li & Hancheng He & Haolin Huang & Shanshan Zhu, 2023. "Lithium Battery State-of-Health Estimation Based on Sample Data Generation and Temporal Convolutional Neural Network," Energies, MDPI, vol. 16(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    4. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    5. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Xu, Zhicun & Xie, Naiming & Diao, Huakang, 2023. "Lithium-ion battery state of health monitoring based on an adaptive variable fractional order multivariate grey model," Energy, Elsevier, vol. 283(C).
    7. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    8. Muhammad Waseem & Jingyuan Huang & Chak-Nam Wong & C. K. M. Lee, 2023. "Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    9. Mostafa Kermani & Erfan Shirdare & Saram Abbasi & Giuseppe Parise & Luigi Martirano, 2021. "Elevator Regenerative Energy Applications with Ultracapacitor and Battery Energy Storage Systems in Complex Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    10. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    11. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    12. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    13. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    14. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    15. Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
    16. Jia, Zhuangzhuang & Huang, Zonghou & Zhai, Hongju & Qin, Pen & Zhang, Yue & Li, Yawen & Wang, Qingsong, 2022. "Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure," Energy, Elsevier, vol. 251(C).
    17. Yunfeng Jiang & Louis J. Shrinkle & Raymond A. de Callafon, 2019. "Autonomous Demand-Side Current Scheduling of Parallel Buck Regulated Battery Modules," Energies, MDPI, vol. 12(11), pages 1-20, May.
    18. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
    19. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    20. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3993-:d:1142857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.