IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221003236.html
   My bibliography  Save this article

PVAnalytX: A MATLAB toolkit for techno-economic analysis and performance evaluation of rooftop PV systems

Author

Listed:
  • Hassan, Masood Ul
  • Saha, Sajeeb
  • Haque, Md Enamul

Abstract

The adaptation of rooftop solar PV systems has increased significantly in recent years. Batteries have become an essential part of the rooftop solar PV systems, which ensures maximum utilisation of solar energy. With a view to present a clear insight to benefits of a rooftop solar PV system, considering both the technical and economic benefits, a MATLAB based PVAnalytX software toolkit has been presented in this paper. The end users can evaluate both the technical and economic benefits of a rooftop solar PV system considering solar generation and electricity demand variability, as well the battery performance degradation over the course of its usage. In addition, the mechanism to generate forecasted solar power generation and electricity demand data is also included as a feature in the proposed software toolkit. Furthermore, the toolkit considers actual electricity imports and export tariffs that allow the end consumers to know their financial expenditures for electricity consumption and income generated through the export of access rooftop PV energy to the grid. A thorough validation of the proposed toolkit has been presented through two case studies using actual dataset of rooftop PV systems located at CBD region of Sydney, Australia.

Suggested Citation

  • Hassan, Masood Ul & Saha, Sajeeb & Haque, Md Enamul, 2021. "PVAnalytX: A MATLAB toolkit for techno-economic analysis and performance evaluation of rooftop PV systems," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003236
    DOI: 10.1016/j.energy.2021.120074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    2. Lazzeroni, Paolo & Moretti, Francesco & Stirano, Federico, 2020. "Economic potential of PV for Italian residential end-users," Energy, Elsevier, vol. 200(C).
    3. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
    4. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    5. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    6. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    7. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    8. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    9. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    10. Burke, Andrew & Miller, Marshall, 2009. "Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles," Institute of Transportation Studies, Working Paper Series qt3mc7g3vt, Institute of Transportation Studies, UC Davis.
    11. Du, Jiuyu & Zhang, Xiaobin & Wang, Tianze & Song, Ziyou & Yang, Xueqing & Wang, Hewu & Ouyang, Minggao & Wu, Xiaogang, 2018. "Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system," Energy, Elsevier, vol. 165(PA), pages 153-163.
    12. Damian Shaw-Williams & Connie Susilawati & Geoffrey Walker, 2018. "Value of Residential Investment in Photovoltaics and Batteries in Networks: A Techno-Economic Analysis," Energies, MDPI, vol. 11(4), pages 1-25, April.
    13. Oliver, M. & Jackson, T., 2001. "Energy and economic evaluation of building-integrated photovoltaics," Energy, Elsevier, vol. 26(4), pages 431-439.
    14. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    15. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    16. Han, Xiaojuan & Liang, Yubo & Ai, Yaoyao & Li, Jianlin, 2018. "Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries," Energy, Elsevier, vol. 165(PA), pages 326-339.
    17. Kolhe, Mohanlal & Kolhe, Sunita & Joshi, J. C., 2002. "Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India," Energy Economics, Elsevier, vol. 24(2), pages 155-165, March.
    18. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    19. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    20. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    21. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    22. Das, Barun K. & Al-Abdeli, Yasir M. & Woolridge, Matthew, 2019. "Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance," Energy, Elsevier, vol. 168(C), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uddin, Moslem & Mo, Huadong & Dong, Daoyi & Elsawah, Sondoss, 2023. "Techno-economic potential of multi-energy community microgrid: The perspective of Australia," Renewable Energy, Elsevier, vol. 219(P2).
    2. Codina, Eloi & Domenech, Bruno & Juanpera, Marc & Palomo-Avellaneda, Leopold & Pastor, Rafael, 2023. "Is switching to solar energy a feasible investment? A techno-economic analysis of domestic consumers in Spain," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    2. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    4. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    5. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    6. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    7. de la Hoz, Jordi & Martín, Helena & Ballart, Jordi & Córcoles, Felipe & Graells, Moisès, 2013. "Evaluating the new control structure for the promotion of grid connected photovoltaic systems in Spain: Performance analysis of the period 2008–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 541-554.
    8. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    9. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    12. Liu, Zhengguang & Guo, Zhiling & Song, Chenchen & Du, Ying & Chen, Qi & Chen, Yuntian & Zhang, Haoran, 2023. "Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level," Applied Energy, Elsevier, vol. 344(C).
    13. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    14. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    15. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    16. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    17. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    18. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    19. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    20. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.