IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8010-d1298039.html
   My bibliography  Save this article

Lithium Battery State-of-Health Estimation Based on Sample Data Generation and Temporal Convolutional Neural Network

Author

Listed:
  • Fang Guo

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • Guangshan Huang

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • Wencan Zhang

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • An Wen

    (Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou 313098, China)

  • Taotao Li

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • Hancheng He

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • Haolin Huang

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

  • Shanshan Zhu

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

Abstract

Accurate estimation of battery health is an effective means of improving the safety and reliability of electrical equipment. However, developing data-driven models to estimate battery state of health (SOH) is challenging when the amount of data is restricted. In this regard, this study proposes a method for estimating the SOH of lithium batteries based on sample data generation and a temporal convolutional neural network. First, we analyzed the charge/discharge curves of the batteries, from which we extracted features that were highly correlated with the SOH decay. Then, we used a Variational Auto-Encoder (VAE) to learn the features and distributions of the sample data to generate highly similar data and enrich the number of samples. Finally, a temporal convolutional neural network (TCN) was built to mine the nonlinear relationship between features and SOH by combining the source and extended domain data to realize SOH estimation. The experimental results show that the proposed method in this study has less than 2% error in SOH estimation, which improves the accuracy by 64.9% based on its baseline model. The feasibility of using data-driven models for battery health management in data-constrained application scenarios is demonstrated.

Suggested Citation

  • Fang Guo & Guangshan Huang & Wencan Zhang & An Wen & Taotao Li & Hancheng He & Haolin Huang & Shanshan Zhu, 2023. "Lithium Battery State-of-Health Estimation Based on Sample Data Generation and Temporal Convolutional Neural Network," Energies, MDPI, vol. 16(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8010-:d:1298039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
    4. Chunling Wu & Juncheng Fu & Xinrong Huang & Xianfeng Xu & Jinhao Meng, 2023. "Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR," Energies, MDPI, vol. 16(10), pages 1-16, May.
    5. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    2. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
    4. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
    5. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    6. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    7. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    9. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    10. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    11. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    12. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    13. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    14. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    15. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    16. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    17. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    18. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    19. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    20. Feng, Xinhong & Zhang, Yongzhi & Xiong, Rui & Wang, Chun, 2024. "Comprehensive performance comparison among different types of features in data-driven battery state of health estimation," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8010-:d:1298039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.