IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p3974-d1142380.html
   My bibliography  Save this article

Energy Independence of a Small Office Community Powered by Photovoltaic-Wind Hybrid Systems in Widely Different Climates

Author

Listed:
  • Nicoletta Matera

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Domenico Mazzeo

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Cristina Baglivo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Paolo Maria Congedo

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

Hybrid renewable energy systems are an optimal solution for small energy communities’ energy supply. One of the critical issues is the strong correlation of these systems with outdoor climatic conditions. The goal is to make local communities increasingly energy independent. To this end, an in-depth analysis of the behaviour of hybrid photovoltaic (PV)–wind systems powering small office communities in 48 locations around the world characterized by widely varying climates was conducted. System sizes, assumed to be stand-alone or grid-connected, were varied, for a total of 343 system power configurations. Highest satisfied load fraction (SLF) values are obtained with a significant predominance of PV over wind; the trend is more pronounced in dry and continental climates (zones B and D according to the Köppen climate classification). The utilization factor (UF) values of 1 are rarely reached and never in the wind-only or PV-only configurations. In all climates, the grid energy interaction factor (GEIF) values of zero are never reached but come very close. The benefit-cost ratio (BCR) of grid-connected systems is significantly higher than stand-alone systems.

Suggested Citation

  • Nicoletta Matera & Domenico Mazzeo & Cristina Baglivo & Paolo Maria Congedo, 2023. "Energy Independence of a Small Office Community Powered by Photovoltaic-Wind Hybrid Systems in Widely Different Climates," Energies, MDPI, vol. 16(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3974-:d:1142380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/3974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/3974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    2. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    3. Sapkota, Alka & Lu, Zhibo & Yang, Haizhen & Wang, Juan, 2014. "Role of renewable energy technologies in rural communities' adaptation to climate change in Nepal," Renewable Energy, Elsevier, vol. 68(C), pages 793-800.
    4. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    5. Andy Stirling, 2014. "From Sustainability to Transformation: Dynamics and diversity in reflexive governance of vulnerability," SPRU Working Paper Series 2014-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. Kosai, Shoki & Unesaki, Hironobu, 2020. "Short-term vs long-term reliance: Development of a novel approach for diversity of fuels for electricity in energy security," Applied Energy, Elsevier, vol. 262(C).
    7. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    8. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).
    9. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    10. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    11. Mazzeo, Domenico & Oliveti, Giuseppe & Baglivo, Cristina & Congedo, Paolo M., 2018. "Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage," Energy, Elsevier, vol. 156(C), pages 688-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurgul Moldybayeva & Seitkazy Keshuov & Kajrat Kenzhetaev & Demessova Saule & Aigul Taldybayeva & Ivaylo Stoyanov & Teodor Iliev, 2024. "Decision Matrix in an Autonomous Power System for Agro-Industrial Complexes with Renewable Energy Sources," Energies, MDPI, vol. 17(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    4. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    5. Paolo Maria Congedo & Cristina Baglivo & Giulia Negro, 2021. "A New Device Hypothesis for Water Extraction from Air and Basic Air Condition System in Developing Countries," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    7. Le, Thai-Ha & Chang, Youngho & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki, 2019. "Energy insecurity in Asia: A multi-dimensional analysis," Economic Modelling, Elsevier, vol. 83(C), pages 84-95.
    8. Radovanović, Mirjana & Filipović, Sanja & Pavlović, Dejan, 2017. "Energy security measurement – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1020-1032.
    9. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).
    10. Nicoletta Matera & Domenico Mazzeo & Cristina Baglivo & Paolo Maria Congedo, 2022. "Will Climate Change Affect Photovoltaic Performances? A Long-Term Analysis from 1971 to 2100 in Italy," Energies, MDPI, vol. 15(24), pages 1-16, December.
    11. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    12. Ahmed, Asam & Sutrisno, Setiadi Wicaksono & You, Siming, 2020. "A two-stage multi-criteria analysis method for planning renewable energy use and carbon saving," Energy, Elsevier, vol. 199(C).
    13. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    14. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    15. Suman, A., 2021. "Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Bonini, Matteo & Wen, John Z. & Nathwani, Jatin & Oliveti, Giuseppe, 2021. "Artificial intelligence application for the performance prediction of a clean energy community," Energy, Elsevier, vol. 232(C).
    17. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    18. Kosai, Shoki & Unesaki, Hironobu, 2020. "Short-term vs long-term reliance: Development of a novel approach for diversity of fuels for electricity in energy security," Applied Energy, Elsevier, vol. 262(C).
    19. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    20. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3974-:d:1142380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.