IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p336-d1017706.html
   My bibliography  Save this article

EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines

Author

Listed:
  • Elsayed Abdelhameed

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
    Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33511, Egypt)

  • Hiroshi Tashima

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan)

Abstract

Techniques such as exhaust gas recirculation (EGR) and water-in-fuel emulsions (WFEs) can significantly decrease NOx emissions in diesel engines. As a disadvantage of adopting EGR, the afterburning period lengthens owing to a shortage of oxygen, lowering thermal efficiency. Meanwhile, WFEs can slightly reduce NOx emissions and reduce the afterburning phase without severely compromising thermal efficiency. Therefore, the EGR–WFE combination was modeled utilizing the KIVA-3V code along with GT power and experimental results. The findings indicated that combining EGR with WFEs is an efficient technique to reduce afterburning and enhance thermal efficiency. Under the EGR state, the NO product was evenly lowered. In the WFE, a considerable NO amount was created near the front edge of the combustion flame. Additionally, squish flow from the piston’s up–down movement improved fuel–air mixing, and NO production was increased as a result, particularly at high injection pressure. Using WFEs with EGR at a low oxygen concentration significantly reduced NO emissions while increasing thermal efficiency. For instance, using 16% of the oxygen concentration and a 40% water emulsion, a 94% drop in NO and a 4% improvement in the Indicated Mean Effective Pressure were obtained concurrently. This research proposes using the EGR–WFE combination to minimize NO emissions while maintaining thermal efficiency.

Suggested Citation

  • Elsayed Abdelhameed & Hiroshi Tashima, 2022. "EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines," Energies, MDPI, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:336-:d:1017706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    2. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    3. De Simio, Luigi & Iannaccone, Sabato, 2019. "Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    5. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    6. Hossain, A.K. & Refahtalab, P. & Omran, A. & Smith, D.I. & Davies, P.A., 2020. "An experimental study on performance and emission characteristics of an IDI diesel engine operating with neat oil-diesel blend emulsion," Renewable Energy, Elsevier, vol. 146(C), pages 1041-1050.
    7. Kim, Hyung Jun & Park, Su Han & Lee, Chang Sik, 2016. "Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine," Energy, Elsevier, vol. 107(C), pages 572-579.
    8. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Cristina Cameretti & Roberta De Robbio & Marco Palomba, 2023. "Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    4. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Orodu, David Oyinkepreye & Ogunkunle, Temitope Fred, 2022. "Comparing the effects of Juliflora biodiesel doped with nano-additives on the performance of a compression ignition (CI) engine: Part A," Energy, Elsevier, vol. 244(PA).
    5. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Leonid Plotnikov & Nikita Grigoriev, 2021. "Modernization of the Mechanical Fuel System of a Diesel Locomotive Engine through Physical and Numerical Modeling," Energies, MDPI, vol. 14(24), pages 1-15, December.
    8. Dmitrii V. Antonov & Roman M. Fedorenko & Leonid S. Yanovskiy & Pavel A. Strizhak, 2023. "Physical and Mathematical Models of Micro-Explosions: Achievements and Directions of Improvement," Energies, MDPI, vol. 16(16), pages 1-16, August.
    9. Zhang, Zhicheng & Wei, Shengli & Zhang, Shaobang & Ni, Shidong, 2024. "Study of RP-3/n-butanol fuel spray characteristics and ANN prediction of spray tip penetration," Energy, Elsevier, vol. 292(C).
    10. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    11. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).
    12. Kim, Jun-Soo & Choi, Jae-Hyuk, 2023. "Feasibility study on bio-heavy fuel as an alternative for marine fuel," Renewable Energy, Elsevier, vol. 219(P2).
    13. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    14. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    15. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    16. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    17. Yuji Ikeda & Nobuyuki Kawahara, 2022. "Measurement of Cyclic Variation of the Air-to-Fuel Ratio of Exhaust Gas in an SI Engine by Laser-Induced Breakdown Spectroscopy," Energies, MDPI, vol. 15(9), pages 1-14, April.
    18. Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
    19. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    20. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:336-:d:1017706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.