IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8554-d705761.html
   My bibliography  Save this article

Modernization of the Mechanical Fuel System of a Diesel Locomotive Engine through Physical and Numerical Modeling

Author

Listed:
  • Leonid Plotnikov

    (Turbines and Engines Department, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Str. Mira 19, 620002 Yekaterinburg, Russia)

  • Nikita Grigoriev

    (Turbines and Engines Department, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Str. Mira 19, 620002 Yekaterinburg, Russia
    Ural Diesel-Motor Plant LLC, Str. Front Brigades 18, 620017 Yekaterinburg, Russia)

Abstract

Reducing harmful emissions from exhaust gases and increasing energy efficiency are urgent tasks when designing reciprocating internal combustion engines. In this experimental work, the fuel system of a diesel locomotive engine operating on the Miller cycle is improved. The purpose of the study is to improve the environmental and economic indicators of diesel engines at minimal financial cost. The article provides an overview of the main research on improving fuel supply, mixing and combustion. The features of engine operation are also briefly described. Numerical simulation of the diesel engine operating cycle was performed before the bench tests. The experiments were performed on a full-size diesel engine with a power of 1200 kW. The measuring equipment and experimental technique are described in the article. The technical solutions that made it possible to improve the fuel supply are described. A new design for the high-pressure fuel pump drive is proposed. The optimal fuel injection advance angles are determined. An original design for the fuel pump plunger was developed. The proposed technical solutions made it possible to reduce fuel consumption by up to 3% (from 217.8 to 211.4 g/kW·h) and NOx emissions two-fold (from 19.4 to 8.8 g/kW·h).

Suggested Citation

  • Leonid Plotnikov & Nikita Grigoriev, 2021. "Modernization of the Mechanical Fuel System of a Diesel Locomotive Engine through Physical and Numerical Modeling," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8554-:d:705761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Viet Pham & Duc Thiep Cao, 2019. "A Brief Review Of Technology Solutions On Fuel Injection System Of Diesel Engine To Increase The Power And Reduce Environmental Pollution," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 1-9, January.
    2. Kim, Hyung Jun & Park, Su Han & Lee, Chang Sik, 2016. "Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine," Energy, Elsevier, vol. 107(C), pages 572-579.
    3. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    2. Nguyen Thi Xuan Huong & Bui Thi Dieu Thuy, 2019. "Assessment Of Engineering Speciality Teaching In The Period Of Integration," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 62-65, April.
    3. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Orodu, David Oyinkepreye & Ogunkunle, Temitope Fred, 2022. "Comparing the effects of Juliflora biodiesel doped with nano-additives on the performance of a compression ignition (CI) engine: Part A," Energy, Elsevier, vol. 244(PA).
    4. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    5. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    7. Elsayed Abdelhameed & Hiroshi Tashima, 2022. "EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines," Energies, MDPI, vol. 16(1), pages 1-22, December.
    8. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    9. Zhang, Zhicheng & Wei, Shengli & Zhang, Shaobang & Ni, Shidong, 2024. "Study of RP-3/n-butanol fuel spray characteristics and ANN prediction of spray tip penetration," Energy, Elsevier, vol. 292(C).
    10. Kim, Jun-Soo & Choi, Jae-Hyuk, 2023. "Feasibility study on bio-heavy fuel as an alternative for marine fuel," Renewable Energy, Elsevier, vol. 219(P2).
    11. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    12. Li, Yaopeng & Jia, Ming & Han, Xu & Bai, Xue-Song, 2021. "Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)," Energy, Elsevier, vol. 225(C).
    13. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    14. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    15. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    16. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    17. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    19. Annika Maria Ziegler & Norbert Brunner & Manfred Kühleitner, 2020. "The Markets of Green Cars of Three Countries: Analysis Using Lotka–Volterra and Bertalanffy–Pütter Models," JOItmC, MDPI, vol. 6(3), pages 1-19, August.
    20. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8554-:d:705761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.