IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3146-d801969.html
   My bibliography  Save this article

MPPT Control of Grid Connected DFIG at Variable Wind Speed

Author

Listed:
  • Erdal Bekiroglu

    (Electrical and Electronics Engineering Department, Bolu Abant Izzet Baysal University, Bolu 14280, Turkey)

  • Muhammed Duran Yazar

    (Electrical and Electronics Engineering Department, Bolu Abant Izzet Baysal University, Bolu 14280, Turkey)

Abstract

In this study, maximum power point tracking (MPPT) control of a grid-connected doubly fed induction generated (DFIG)-based wind energy conversion system (WECS) at variable wind speed was designed and analyzed. The real wind speed data of the Edremit/Balıkesir region in Turkey was used as the wind speed profile. A N90/2.5 MW wind turbine model of Nordex Company was used in the study. Firstly, a conventional PI controller was applied to both rotor and grid side converters. The rotor-side converter (RSC) controls the power generated from the DFIG, whereas the grid-side converter (GSC) controls the DC bus voltage. An MPPT controller was applied to the RSC to generate reference torque at instant variable wind speeds. Thus, the system’s response time, electromagnetic torque, generated power, and grid-side currents parameters were improved. In the MPPT controller, the reference torque value is produced by using the angular velocity and reference angular velocity values of the DFIG. The proposed system was modeled and simulated in Matlab/Simulink. Generated power, DC bus voltage, response time, electromagnetic torque, and grid side currents results were obtained. The results of the conventional PI controller and the results of the PI controller with MPPT were compared. The results of the proposed control were also compared with the related studies. The results showed that the proposed system is reliable, applicable, and valid for the grid-connected DFIG at variable wind speeds.

Suggested Citation

  • Erdal Bekiroglu & Muhammed Duran Yazar, 2022. "MPPT Control of Grid Connected DFIG at Variable Wind Speed," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3146-:d:801969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    2. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    3. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.
    4. Piotr Pura & Grzegorz Iwański, 2021. "Rotor Current Feedback Based Direct Power Control of a Doubly Fed Induction Generator Operating with Unbalanced Grid," Energies, MDPI, vol. 14(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemant Ahuja & Arika Singh & Sachin Sharma & Gulshan Sharma & Pitshou N. Bokoro, 2022. "Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid," Energies, MDPI, vol. 15(13), pages 1-15, July.
    2. Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
    3. Amir Raouf & Kotb B. Tawfiq & Elsayed Tag Eldin & Hossam Youssef & Elwy E. El-Kholy, 2023. "Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance," Energies, MDPI, vol. 16(5), pages 1-22, February.
    4. Stanisław Chudzik, 2023. "Wind Microturbine with Adjustable Blade Pitch Angle," Energies, MDPI, vol. 16(2), pages 1-16, January.
    5. Djamila Rekioua & Toufik Rekioua & Ahmed Elsanabary & Saad Mekhilef, 2023. "Power Management Control of an Autonomous Photovoltaic/Wind Turbine/Battery System," Energies, MDPI, vol. 16(5), pages 1-24, February.
    6. Tarak Ghennam & Lakhdar Belhadji & Nassim Rizoug & Bruno Francois & Seddik Bacha, 2024. "A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation," Energies, MDPI, vol. 17(9), pages 1-19, May.
    7. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Christoph M. Hackl & Pol Jané-Soneira & Martin Pfeifer & Korbinian Schechner & Sören Hohmann, 2018. "Full- and Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 11(7), pages 1-33, July.
    3. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    4. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    5. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    6. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    7. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    8. Xiang Li & Jing Qian & Danning Tian & Yun Zeng & Fei Cao & Lisheng Li & Ganyuan Zhang, 2023. "Maximum Power Tracking Control of Wind Turbines Based on a New Prescribed Performance Function," Energies, MDPI, vol. 16(10), pages 1-21, May.
    9. Abrar Ahmed Chhipą & Prąsun Chakrabarti & Vadim Bolshev & Tulika Chakrabarti & Gennady Samarin & Alexey N. Vasilyev & Sandeep Ghosh & Alexander Kudryavtsev, 2022. "Modeling and Control Strategy of Wind Energy Conversion System with Grid-Connected Doubly-Fed Induction Generator," Energies, MDPI, vol. 15(18), pages 1-26, September.
    10. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    11. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.
    12. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    13. Zbigniew Leonowicz & Michal Jasinski, 2022. "Machine Learning and Data Mining Applications in Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.
    14. Felix Dietrich & Steffen Borchers-Tigasson & Till Naumann & Horst Schulte, 2021. "Adaptive Extremum Seeking Control of Urban Area Wind Turbines," Energies, MDPI, vol. 14(5), pages 1-12, March.
    15. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    16. Hui Liu & Peng Wang & Teyang Zhao & Zhenggang Fan & Houlin Pan, 2022. "A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms," Energies, MDPI, vol. 15(8), pages 1-23, April.
    17. Hooman Ghaffarzadeh & Ali Mehrizi-Sani, 2020. "Review of Control Techniques for Wind Energy Systems," Energies, MDPI, vol. 13(24), pages 1-19, December.
    18. Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
    19. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.
    20. Hemant Ahuja & Arika Singh & Sachin Sharma & Gulshan Sharma & Pitshou N. Bokoro, 2022. "Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid," Energies, MDPI, vol. 15(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3146-:d:801969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.