Oscillation of Cavitating Vortices in Draft Tubes of a Simplified Model Turbine and a Model Pump–Turbine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ondřej Urban & Michaela Kurková & Pavel Rudolf, 2021. "Application of Computer Graphics Flow Visualization Methods in Vortex Rope Investigations," Energies, MDPI, vol. 14(3), pages 1-21, January.
- Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
- David Valentín & Alexandre Presas & Eduard Egusquiza & Carme Valero & Mònica Egusquiza & Matias Bossio, 2017. "Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities," Energies, MDPI, vol. 10(12), pages 1-17, December.
- Lu, Guocheng & Zuo, Zhigang & Sun, Yuekun & Liu, Demin & Tsujimoto, Yoshinobu & Liu, Shuhong, 2017. "Experimental evidence of cavitation influences on the positive slope on the pump performance curve of a low specific speed model pump-turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1539-1550.
- Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
- Sergey Skripkin & Daniil Suslov & Ivan Plokhikh & Mikhail Tsoy & Evgeny Gorelikov & Ivan Litvinov, 2023. "Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser," Energies, MDPI, vol. 16(5), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Liu & Dezhong Wang & Hongjuan Ran & Rui Xu & Yu Song & Bo Gong, 2021. "RANS CFD Analysis of Hump Formation Mechanism in Double-Suction Centrifugal Pump under Part Load Condition," Energies, MDPI, vol. 14(20), pages 1-17, October.
- Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
- Fan, Yading & Chen, Tairan & Liang, Wendong & Wang, Guoyu & Huang, Biao, 2022. "Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer," Renewable Energy, Elsevier, vol. 184(C), pages 291-305.
- Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Yangyang Wei & Yuhui Shi & Weidong Shi & Bo Pan, 2022. "Numerical Analysis and Experimental Study of Unsteady Flow Characteristics in an Ultra-Low Specific Speed Centrifugal Pump," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
- Valentín, David & Presas, Alexandre & Valero, Carme & Egusquiza, Mònica & Egusquiza, Eduard & Gomes, Joao & Avellan, François, 2020. "Transposition of the mechanical behavior from model to prototype of Francis turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1011-1023.
- Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
- Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
- Ran, Hongjuan & Liu, Yong & Luo, Xianwu & Shi, Tianjiao & Xu, Yongliang & Chen, Yuanlin & Wang, Dezhong, 2020. "Experimental comparison of two different positive slopes in one single pump turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1218-1228.
- Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
- Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
- Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
- Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
- Yang, Gang & Shen, Xi & Pan, Qiang & Geng, Linlin & Shi, Lei & Xu, Bin & Zhang, Desheng, 2024. "Investigation on passive suppression method of hump characteristics in a large vertical volute centrifugal pump: Using combined diffuser vane structure," Energy, Elsevier, vol. 304(C).
- Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
- Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
- Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
- K., Subramanya & Chelliah, Thanga Raj, 2023. "Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Yun Jia & Xianzhu Wei & Qianyun Wang & Jinsheng Cui & Fengchen Li, 2019. "Experimental Study of the Effect of Splitter Blades on the Performance Characteristics of Francis Turbines," Energies, MDPI, vol. 12(9), pages 1-16, May.
- Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
More about this item
Keywords
cavitating vortices; turbine; pump–turbine; high-speed visualization; proper orthogonal decomposition (POD);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2965-:d:796534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.