IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2943-d795827.html
   My bibliography  Save this article

SOC Balancing and Coordinated Control Based on Adaptive Droop Coefficient Algorithm for Energy Storage Units in DC Microgrid

Author

Listed:
  • Guizhen Tian

    (College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
    Inner Mongolia Regional Key Laboratory of Electrical Power Conversion, Transmission and Control, Hohhot 010080, China)

  • Yuding Zheng

    (College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)

  • Guangchen Liu

    (College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
    Inner Mongolia Regional Key Laboratory of Electrical Power Conversion, Transmission and Control, Hohhot 010080, China)

  • Jianwei Zhang

    (College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
    Inner Mongolia Regional Key Laboratory of Electrical Power Conversion, Transmission and Control, Hohhot 010080, China)

Abstract

In order to achieve a state-of-charge (SOC) balance among multiple energy storage units (MESUs) in an islanded DC microgrid, a SOC balancing and coordinated control strategy based on the adaptive droop coefficient algorithm for MESUs is proposed. When the SOC deviation is significant, the droop coefficient for an energy storage unit (ESU) with a higher (or lower) SOC is set to a minimum value when discharging (or charging). The ESU with the higher (or lower) SOC is controlled to discharge (or charge) with the rated power, while the other ESU compensates for the remaining power when the demanded discharging (or charging) power is greater than the rated power of the individual ESU. Otherwise, when the demanded discharging (or charging) power is lower than the rated power of either ESU, the ESU with the higher (or lower) SOC releases (or absorbs) almost all the required power while the other ESU barely absorbs or releases power, thus quickly realizing SOC balancing. When the SOC deviation is slight, the fuzzy logic algorithm dynamically adjusts the droop coefficient and changes the power distribution relationship to balance the SOC accurately. Furthermore, a bus voltage recovery control scheme is employed to regulate the bus voltage, thus improving the voltage quality. The energy coordinated management strategy is adopted to ensure the power balance and stabilize the bus voltage in the DC microgrid. A simulation model is built in MATLAB/Simulink, and the simulation results demonstrate the effectiveness of the proposed control strategy in achieving fast and accurate SOC balance and regulating the bus voltage.

Suggested Citation

  • Guizhen Tian & Yuding Zheng & Guangchen Liu & Jianwei Zhang, 2022. "SOC Balancing and Coordinated Control Based on Adaptive Droop Coefficient Algorithm for Energy Storage Units in DC Microgrid," Energies, MDPI, vol. 15(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2943-:d:795827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    2. Ma, Yuechao & Wang, Shengtie & Liu, Guangchen & Tian, Guizhen & Zhang, Jianwei & Liu, Ruiming, 2024. "State-of-charge balancing strategy of battery energy storage units with a voltage balance function for a Bipolar DC mircrogrid," Applied Energy, Elsevier, vol. 356(C).
    3. Dat Thanh Tran & Al Faris Habibullah & Kyeong-Hwa Kim, 2022. "Seamless Power Management for a Distributed DC Microgrid with Minimum Communication Links under Transmission Time Delays," Sustainability, MDPI, vol. 14(22), pages 1-29, November.
    4. Xiang Li & Zhenya Ji & Fengkun Yang & Zhenlan Dou & Chunyan Zhang & Liangliang Chen, 2022. "A Distributed Two-Level Control Strategy for DC Microgrid Considering Safety of Charging Equipment," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    2. Caterina De Lucia & Pasquale Pazienza & Mark Bartlett, 2020. "Does Good ESG Lead to Better Financial Performances by Firms? Machine Learning and Logistic Regression Models of Public Enterprises in Europe," Sustainability, MDPI, vol. 12(13), pages 1-29, July.
    3. Cassettari, Lucia & Bendato, Ilaria & Mosca, Marco & Mosca, Roberto, 2017. "Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing," Applied Energy, Elsevier, vol. 190(C), pages 841-851.
    4. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    5. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    6. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    7. Yuanhang Qi & Haoyu Luo & Yuhui Luo & Rixu Liao & Liwei Ye, 2023. "Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-15, August.
    8. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    9. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    10. Cheng-Wen Lee & Bing-Yi Lin, 2017. "Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    12. Md Asaduzzaman Shoeb & Farhad Shahnia & GM Shafiullah & Fushuan Wen, 2023. "A Technique to Optimally Prevent the Voltage and Frequency Violation in Renewable Energy Integrated Microgrids," Energies, MDPI, vol. 16(15), pages 1-27, August.
    13. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    14. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    15. Heng, Jiani & Wang, Jianzhou & Xiao, Liye & Lu, Haiyan, 2017. "Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting," Applied Energy, Elsevier, vol. 208(C), pages 845-866.
    16. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    17. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    18. Yu-Shan Cheng & Yi-Hua Liu & Holger C. Hesse & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2018. "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community," Energies, MDPI, vol. 11(2), pages 1-18, February.
    19. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    20. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2943-:d:795827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.