IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p469-d132935.html
   My bibliography  Save this article

A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community

Author

Listed:
  • Yu-Shan Cheng

    (Power Electronics Research Center, National Taiwan University of Science and Technology (NTUST), No.43, Sec. 4, Keelung Road, Taipei 106, Taiwan)

  • Yi-Hua Liu

    (Department of Electrical Engineering, National Taiwan University of Science and Technology (NTUST), No.43, Sec. 4, Keelung Road, Taipei 106, Taiwan)

  • Holger C. Hesse

    (Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany)

  • Maik Naumann

    (Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany)

  • Cong Nam Truong

    (Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany)

  • Andreas Jossen

    (Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany)

Abstract

Self-consumption of household photovoltaic (PV) storage systems has become profitable for residential owners under the trends of limited feed-in power and decreasing PV feed-in tariffs. For individual PV-storage systems, the challenge mainly lies in managing surplus generation of battery and grid power flow, ideally without relying on error-prone forecasts for both generation and consumption. Considering the large variation in power profiles of different houses in a neighborhood, the strategy is also supposed to be beneficial and applicable for the entire community. In this study, an adaptable battery charging control strategy is designed in order to obtain minimum costs for houses without any meteorological or load forecasts. Based on fuzzy logic control (FLC), battery state-of-charge (SOC) and the variation of SOC (∆SOC) are taken as input variables to dynamically determine output charging power with minimum costs. The proposed FLC-based algorithm benefits from the charging battery as much as possible during the daytime, and meanwhile properly preserves the capacity at midday when there is high possibility of curtailment loss. In addition, due to distinct power profiles in each individual house, input membership functions of FLC are improved by particle swarm optimization (PSO) to achieve better overall performance. A neighborhood with 74 houses in Germany is set up as a scenario for comparison to prior studies. Without forecasts of generation and consumption power, the proposed method leads to minimum costs in 98.6% of houses in the community, and attains the lowest average expenses for a single house each year.

Suggested Citation

  • Yu-Shan Cheng & Yi-Hua Liu & Holger C. Hesse & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2018. "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community," Energies, MDPI, vol. 11(2), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:469-:d:132935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Hou & Thai-Thanh Nguyen & Hak-Man Kim & Huihui Song & Yanbin Qu, 2017. "An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications," Energies, MDPI, vol. 10(2), pages 1-20, February.
    2. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    3. Jallouli, Rihab & Krichen, Lotfi, 2012. "Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices," Energy, Elsevier, vol. 40(1), pages 196-209.
    4. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    5. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    6. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    7. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    8. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2017. "Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs) for Enhancing the Resiliency of Hybrid Microgrids," Energies, MDPI, vol. 10(3), pages 1-19, February.
    9. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    10. Niknam, Taher, 2010. "A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem," Applied Energy, Elsevier, vol. 87(1), pages 327-339, January.
    11. Eleonora Riva Sanseverino & Maria Luisa Di Silvestre & Gaetano Zizzo & Roberto Gallea & Ninh Nguyen Quang, 2013. "A Self-Adapting Approach for Forecast-Less Scheduling of Electrical Energy Storage Systems in a Liberalized Energy Market," Energies, MDPI, vol. 6(11), pages 1-22, November.
    12. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    13. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    14. Pereira, M. & Muñoz de la Peña, D. & Limon, D., 2017. "Robust economic model predictive control of a community micro-grid," Renewable Energy, Elsevier, vol. 100(C), pages 3-17.
    15. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    16. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Ntumba Marc-Alain Mutombo, 2021. "Dynamic Stability of Wind Power Flow and Network Frequency for a High Penetration Wind-Based Energy Storage System Using Fuzzy Logic Controller," Energies, MDPI, vol. 14(14), pages 1-18, July.
    2. Mahmoud S. AbouOmar & Hua-Jun Zhang & Yi-Xin Su, 2019. "Fractional Order Fuzzy PID Control of Automotive PEM Fuel Cell Air Feed System Using Neural Network Optimization Algorithm," Energies, MDPI, vol. 12(8), pages 1-23, April.
    3. Khalilpour, Kaveh R. & Lusis, Peter, 2020. "Network capacity charge for sustainability and energy equity: A model-based analysis," Applied Energy, Elsevier, vol. 266(C).
    4. Shehab Al-Sakkaf & Mahmoud Kassas & Muhammad Khalid & Mohammad A. Abido, 2019. "An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch," Energies, MDPI, vol. 12(8), pages 1-25, April.
    5. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    6. Manuel Kersic & Thilo Bocklisch & Michael Böttiger & Lisa Gerlach, 2020. "Coordination Mechanism for PV Battery Systems with Local Optimizing Energy Management," Energies, MDPI, vol. 13(3), pages 1-25, January.
    7. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.
    8. Cheng-Ta Tsai & Yu-Shan Cheng & Kuen-Huei Lin & Chun-Lung Chen, 2021. "Effects of a Battery Energy Storage System on the Operating Schedule of a Renewable Energy-Based Time-of-Use Rate Industrial User under the Demand Bidding Mechanism of Taipower," Sustainability, MDPI, vol. 13(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Farrokhabadi, 2019. "Data-Driven Mitigation of Energy Scheduling Inaccuracy in Renewable-Penetrated Grids: Summerside Electric Use Case," Energies, MDPI, vol. 12(12), pages 1-23, June.
    2. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    3. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    4. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    5. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    6. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    7. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    8. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    9. Erickson Diogo Pereira Puchta & Priscilla Bassetto & Lucas Henrique Biuk & Marco Antônio Itaborahy Filho & Attilio Converti & Mauricio dos Santos Kaster & Hugo Valadares Siqueira, 2021. "Swarm-Inspired Algorithms to Optimize a Nonlinear Gaussian Adaptive PID Controller," Energies, MDPI, vol. 14(12), pages 1-20, June.
    10. Vo, Dieu Ngoc & Ongsakul, Weerakorn, 2012. "Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network," Applied Energy, Elsevier, vol. 91(1), pages 281-289.
    11. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    12. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    13. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    14. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    15. Yaşar, Celal & Özyön, Serdar, 2011. "A new hybrid approach for nonconvex economic dispatch problem with valve-point effect," Energy, Elsevier, vol. 36(10), pages 5838-5845.
    16. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
    17. Yacine Labbi & Djilani Ben Attous, 2017. "A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 275-286, June.
    18. Sukumar, Shivashankar & Mokhlis, Hazlie & Mekhilef, Saad & Naidu, Kanendra & Karimi, Mazaher, 2017. "Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid," Energy, Elsevier, vol. 118(C), pages 1322-1333.
    19. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    20. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:469-:d:132935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.