IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2674-d787725.html
   My bibliography  Save this article

Method of Reduction in Energy Consumption by the Drive Systems of a Mobile Device with a Controlled Gear Ratio

Author

Listed:
  • Karol Bagiński

    (Warsaw University of Technology, Faculty of Mechatronics, św. A. Boboli 8, 02-525 Warsaw, Poland)

  • Wojciech Credo

    (Warsaw University of Technology, Faculty of Mechatronics, św. A. Boboli 8, 02-525 Warsaw, Poland)

  • Jakub Wierciak

    (Warsaw University of Technology, Faculty of Mechatronics, św. A. Boboli 8, 02-525 Warsaw, Poland)

  • Sergiusz Łuczak

    (Warsaw University of Technology, Faculty of Mechatronics, św. A. Boboli 8, 02-525 Warsaw, Poland)

Abstract

The degree of autonomy of a battery-powered mobile device depends, among others, on the efficient use of energy by the powered devices. Using an example of electric drive systems of an orthotic robot, the authors present a method of reducing the energy demand of these systems by using a gear with a controlled ratio. The gear ratios are selected on the basis of special graphs illustrating the instantaneous energy consumption during drive operations. The simulation studies proved a possibility of achieving energy savings during the implementation of the robotic functions of the robot as high as 50%. The article presents the course and results of the research as well as the concept of their use while designing electric drive systems for mobile devices.

Suggested Citation

  • Karol Bagiński & Wojciech Credo & Jakub Wierciak & Sergiusz Łuczak, 2022. "Method of Reduction in Energy Consumption by the Drive Systems of a Mobile Device with a Controlled Gear Ratio," Energies, MDPI, vol. 15(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2674-:d:787725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    2. Antti Ritari & Jari Vepsäläinen & Klaus Kivekäs & Kari Tammi & Heikki Laitinen, 2020. "Energy Consumption and Lifecycle Cost Analysis of Electric City Buses with Multispeed Gearboxes," Energies, MDPI, vol. 13(8), pages 1-21, April.
    3. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    2. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    3. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
    4. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Pejush Sarker & Jianguo Zhu, 2022. "Characterization of Rotational Magnetic Properties of Amorphous Metal Materials for Advanced Electrical Machine Design and Analysis," Energies, MDPI, vol. 15(20), pages 1-18, October.
    5. Gianluca Valenti & Stefano Murgia & Ida Costanzo & Matteo Scarnera & Francesco Battistella, 2021. "Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    6. Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
    7. Gao, Bingzhao & Meng, Dele & Shi, Wentong & Cai, Wenqi & Dong, Shiying & Zhang, Yuanjian & Chen, Hong, 2022. "Topology optimization and the evolution trends of two-speed transmission of EVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Hensher, David A., 2021. "The case for negotiated contracts under the transition to a green bus fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 255-269.
    9. Mustafa Karamuk & Orhan Behic Alankus, 2022. "Development and Experimental Implementation of Active Tilt Control System Using a Servo Motor Actuator for Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 15(6), pages 1-28, March.
    10. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    11. Milla Vehviläinen & Pekka Rahkola & Janne Keränen & Jenni Pippuri-Mäkeläinen & Marko Paakkinen & Jukka Pellinen & Kari Tammi & Anouar Belahcen, 2022. "Simulation-Based Comparative Assessment of a Multi-Speed Transmission for an E-Retrofitted Heavy-Duty Truck," Energies, MDPI, vol. 15(7), pages 1-29, March.
    12. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.
    13. Xiaoyu Li & Tengyuan Wang & Jiaxu Li & Yong Tian & Jindong Tian, 2022. "Energy Consumption Estimation for Electric Buses Based on a Physical and Data-Driven Fusion Model," Energies, MDPI, vol. 15(11), pages 1-17, June.
    14. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    15. Zbigniew Czapla & Grzegorz Sierpiński, 2023. "Driving and Energy Profiles of Urban Bus Routes Predicted for Operation with Battery Electric Buses," Energies, MDPI, vol. 16(15), pages 1-19, July.
    16. Peng Wu & Penghui Qiang & Tao Pan & Huaiquan Zang, 2022. "Multi-Objective Optimization of Gear Ratios of a Seamless Three-Speed Automated Manual Transmission for Electric Vehicles Considering Shift Performance," Energies, MDPI, vol. 15(11), pages 1-27, June.
    17. Wei Qin & Linhong Wang & Yuhan Liu & Cheng Xu, 2021. "Energy Consumption Estimation of the Electric Bus Based on Grey Wolf Optimization Algorithm and Support Vector Machine Regression," Sustainability, MDPI, vol. 13(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2674-:d:787725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.