IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2654-d787436.html
   My bibliography  Save this article

Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers

Author

Listed:
  • Jeeheon Kim

    (Eco-System Research Center, Gachon University, Seongnam 13120, Korea)

  • Yongsug Hong

    (Division of Human-Architectural Engineering, Daejin University, 1007 Hoguk-Ro, Pocheon 11159, Korea)

  • Namchul Seong

    (Department of Architectural Engineering Kangwon National University, Samcheok-si 25913, Korea)

  • Daeung Danny Kim

    (Architectural Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

As the time spent by people indoors continues to significantly increase, much attention has been paid to indoor air quality. While many IAQ studies have been conducted through field measurements, the use of data-driven techniques such as machine learning has been increasingly used for the prediction of indoor air pollutants. For the present study, the concentrations of indoor air pollutants such as CO 2 , PM 2.5 , and VOCs in child daycare centers were predicted by using an artificial neural network model with three different training algorithms including Levenberg–Marquardt, Bayesian regularization, and Broyden–Fletcher–Goldfarb–Shanno quasi-Newton methods. For training and validation, data of indoor pollutants measured in child daycare facilities over a 1-month period were used. The results showed all the models produced a good performance for the prediction of indoor pollutants compared with the measured data. Among the models, the prediction by the LM model met the acceptable criteria of ASHRAE guideline 14 under all conditions. It was observed that the prediction performance decreased as the number of hidden layers increased. Moreover, the prediction performance was differed by the type of indoor pollutant. This was caused by patterns observed in the measured data. Considering the outcomes of the study, better prediction results can be obtained through the selection of suitable prediction models for time series data as well as the adjustment of training algorithms.

Suggested Citation

  • Jeeheon Kim & Yongsug Hong & Namchul Seong & Daeung Danny Kim, 2022. "Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers," Energies, MDPI, vol. 15(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2654-:d:787436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    2. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Three: Development of Integrated Model and Applications," Energies, MDPI, vol. 14(18), pages 1-31, September.
    3. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort," Energies, MDPI, vol. 14(16), pages 1-40, August.
    4. Volker Liermann & Sangmeng Li, 2021. "Methods of Machine Learning," Springer Books, in: Volker Liermann & Claus Stegmann (ed.), The Digital Journey of Banking and Insurance, Volume III, pages 225-238, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jierui Dong & Nigel Goodman & Priyadarsini Rajagopalan, 2023. "A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools," IJERPH, MDPI, vol. 20(15), pages 1-18, July.
    2. Talib Dbouk & Dimitris Drikakis, 2022. "Natural Ventilation and Aerosol Particles Dispersion Indoors," Energies, MDPI, vol. 15(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    2. Wenhui Ji & Yanping Yuan, 2022. "Development of Assessing the Thermal Comfort and Energy Performance for Buildings," Energies, MDPI, vol. 15(16), pages 1-2, August.
    3. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Yang Zhang & Bora Cetin & Tuncer B. Edil, 2021. "Seasonal Performance Evaluation of Pavement Base Using Recycled Materials," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    5. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    6. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Three: Development of Integrated Model and Applications," Energies, MDPI, vol. 14(18), pages 1-31, September.
    7. Eldar Yeskuatov & Sook-Ling Chua & Lee Kien Foo, 2022. "Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    8. Qi Chu & Guang Bao & Jiayu Sun, 2022. "Progress and Prospects of Destination Image Research in the Last Decade," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    9. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    10. Mariusz Woszczyński & Joanna Rogala-Rojek & Krzysztof Stankiewicz, 2022. "Advancement of the Monitoring System for Arch Support Geometry and Loads," Energies, MDPI, vol. 15(6), pages 1-21, March.
    11. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    12. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    13. Zhiyong Li & Shiping Pu & Yougen Chen & Renyong Wei, 2020. "An Integration Optimization Strategy of Line Voltage Cascaded Quasi-Z-Source Inverter Parameters Based on GRA-FA," Energies, MDPI, vol. 13(17), pages 1-24, August.
    14. Yan Yang & Chunfa Sha & Wencheng Su & Edwin Kofi Nyefrer Donkor, 2022. "Research on Online Destination Image of Zhenjiang Section of the Grand Canal Based on Network Content Analysis," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    15. Mark Bomberg & Anna Romanska-Zapala & David Yarbrough, 2021. "Towards a New Paradigm for Building Science (Building Physics)," World, MDPI, vol. 2(2), pages 1-22, April.
    16. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    17. Xiangyong Ni & Kangkang Duan, 2022. "Machine Learning-Based Models for Shear Strength Prediction of UHPFRC Beams," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
    18. Muhammad Majeed & Aqil Tariq & Muhammad Mushahid Anwar & Arshad Mahmood Khan & Fahim Arshad & Faisal Mumtaz & Muhammad Farhan & Lili Zhang & Aroosa Zafar & Marjan Aziz & Sanaullah Abbasi & Ghani Rahma, 2021. "Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data," Land, MDPI, vol. 10(10), pages 1-17, September.
    19. You-Hyun Park & Sung-Hwa Kim & Yoon-Young Choi, 2021. "Prediction Models of Early Childhood Caries Based on Machine Learning Algorithms," IJERPH, MDPI, vol. 18(16), pages 1-11, August.
    20. Wang, Chuan'an & Pouramini, Somayeh, 2024. "Multi-objective modified satin Bowerbird optimization algorithm used for simulation-based energy consumption optimization of yearly energy demand of lighting and cooling in a test case room," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2654-:d:787436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.