IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4391-d404113.html
   My bibliography  Save this article

An Integration Optimization Strategy of Line Voltage Cascaded Quasi-Z-Source Inverter Parameters Based on GRA-FA

Author

Listed:
  • Zhiyong Li

    (School of Automation, Central South University, 932 South Lushan Road, Changsha 410083, China)

  • Shiping Pu

    (School of Automation, Central South University, 932 South Lushan Road, Changsha 410083, China)

  • Yougen Chen

    (School of Automation, Central South University, 932 South Lushan Road, Changsha 410083, China)

  • Renyong Wei

    (School of Automation, Central South University, 932 South Lushan Road, Changsha 410083, China)

Abstract

Setting reasonable circuit parameters is an important way to improve the quality of inverters, including waveform quality and power loss. In this paper, a circuit system of line voltage cascaded quasi-Z-source inverter (LVC-qZSI) is built. On this basis, the double frequency voltage ripple ratio and power loss ratio are selected as optimization targets to establish a multi-objective optimization model of LVC-qZSI parameters. To simplify the calculation, an integration optimization strategy of LVC-qZSI parameters based on GRA-FA is proposed. Where, the grey relation analysis (GRA) is used to simplify the multi-objective optimization model. In GRA, the main influence factors are selected as optimization variables by considering the preference coefficient. Then, firefly algorithm (FA) is used to obtain the optimal solution of the multi-objective optimization model. In FA, the weights of objective functions are assigned based on the principle of information entropy. The analysis results are verified by simulation. Research results indicate that the optimization strategy can effectively reduce the double frequency voltage ripple ratio and power loss ratio. Therefore, the strategy proposed in this paper has a superior ability to optimize the parameters of LVC-qZSI, which is of great significance to the initial values setting.

Suggested Citation

  • Zhiyong Li & Shiping Pu & Yougen Chen & Renyong Wei, 2020. "An Integration Optimization Strategy of Line Voltage Cascaded Quasi-Z-Source Inverter Parameters Based on GRA-FA," Energies, MDPI, vol. 13(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4391-:d:404113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    2. Yufeng Tang & Zhiyong Li & Yougen Chen & Renyong Wei, 2019. "Ripple Vector Cancellation Modulation Strategy for Single-Phase Quasi-Z-Source Inverter," Energies, MDPI, vol. 12(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Tang & Hao Sun & Shaoheng Wang, 2020. "A Family of High Step-Up Quasi Z-Source Inverters with Coupled Inductor," Energies, MDPI, vol. 13(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    2. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    4. Wang, Chuan'an & Pouramini, Somayeh, 2024. "Multi-objective modified satin Bowerbird optimization algorithm used for simulation-based energy consumption optimization of yearly energy demand of lighting and cooling in a test case room," Energy, Elsevier, vol. 292(C).
    5. Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
    6. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    7. Kirim Lee & Jinhwan Park & Sejung Jung & Wonhee Lee, 2021. "Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera," Energies, MDPI, vol. 14(20), pages 1-17, October.
    8. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    9. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    10. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    11. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    12. Dhowmya Bhatt & Danalakshmi D & A. Hariharasudan & Marcin Lis & Marlena Grabowska, 2021. "Forecasting of Energy Demands for Smart Home Applications," Energies, MDPI, vol. 14(4), pages 1-19, February.
    13. Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).
    14. Jeeheon Kim & Yongsug Hong & Namchul Seong & Daeung Danny Kim, 2022. "Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers," Energies, MDPI, vol. 15(7), pages 1-17, April.
    15. Lin, Xiaojie & Zhang, Junwei & Du-Ikonen, Liuliu & Zhong, Wei, 2023. "An infiltration load calculation model of large-space buildings based on the grand canonical ensemble theory," Energy, Elsevier, vol. 275(C).
    16. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    17. Cao, Wenqiang & Yu, Junqi & Chao, Mengyao & Wang, Jingqi & Yang, Siyuan & Zhou, Meng & Wang, Meng, 2023. "Short-term energy consumption prediction method for educational buildings based on model integration," Energy, Elsevier, vol. 283(C).
    18. Gao, Zhikun & Yang, Siyuan & Yu, Junqi & Zhao, Anjun, 2024. "Hybrid forecasting model of building cooling load based on combined neural network," Energy, Elsevier, vol. 297(C).
    19. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
    20. Yongrui Qin & Meng Zhao & Qingcheng Lin & Xuefeng Li & Jing Ji, 2022. "Data-Driven Building Energy Consumption Prediction Model Based on VMD-SA-DBN," Mathematics, MDPI, vol. 10(17), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4391-:d:404113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.