IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2646-d786883.html
   My bibliography  Save this article

A New Photovoltaic Emulator Designed for Testing Low-Power Inverters Connected to the LV Grid

Author

Listed:
  • Przemysław Korasiak

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, 31-155 Cracow, Poland)

  • Janusz Jaglarz

    (Faculty of Materials Engineering and Physics, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

Assessing the performance of photovoltaic systems, particularly dedicated DC/AC inverter devices, requires the use of photovoltaic panels operating under natural environmental conditions, such as variations in solar radiation intensity, temperature and wind speed. Environmental testing is obviously very troublesome, inconvenient and limited. An alternative solution is to use a device that emulates the output photovoltaic panel curves in variable weather conditions, which allows the carrying out of all necessary tests at the laboratory. This paper presents a new photovoltaic emulator (PVE), mimicking the output characteristics of the photovoltaic panels. The proposed PVE is designed and constructed at the renewable energy laboratory for testing low-power PV inverters connected to the LV grid. A novelty of this solution is the method for shaping emulated current–voltage characteristics I–V. The concept of this method assumes autonomous regulation of slopes and shapes of emulated curve fragments. This allows us to obtain the desired shapes of the output characteristics for a wide range of both voltages and currents. The proposed PVE is not a pulse device; it belongs to linear analogue circuits. In order to confirm the assumed concept, a prototype is designed and constructed, and laboratory tests are conducted. Satisfactory results are obtained, confirming the correctness of the adopted concept. High compliance of the emulated characteristics is found in comparison to the characteristics of the selected commercial photovoltaic module. Very good results of dynamic tests and energy efficiency measurements are achieved.

Suggested Citation

  • Przemysław Korasiak & Janusz Jaglarz, 2022. "A New Photovoltaic Emulator Designed for Testing Low-Power Inverters Connected to the LV Grid," Energies, MDPI, vol. 15(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2646-:d:786883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Ayop, Razman & Tan, Chee Wei, 2017. "A comprehensive review on photovoltaic emulator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 430-452.
    3. Kadri, Riad & Andrei, Horia & Gaubert, Jean-Paul & Ivanovici, Traian & Champenois, Gérard & Andrei, Paul, 2012. "Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions," Energy, Elsevier, vol. 42(1), pages 57-67.
    4. Ram, J. Prasanth & Manghani, Himanshu & Pillai, Dhanup S. & Babu, T. Sudhakar & Miyatake, Masafumi & Rajasekar, N., 2018. "Analysis on solar PV emulators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 149-160.
    5. Zhongfu Zhou & John Macaulay, 2017. "An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply," Energies, MDPI, vol. 10(12), pages 1-20, December.
    6. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    7. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seungho Choi & Sangyoung Park & Junhee Hong & Jehyuk Won, 2023. "A Design and Validation of 400 W PV Emulator Using Simple Equivalent Circuit for PV Power System Test," Energies, MDPI, vol. 16(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Pelin & Matej Žnidarec & Damir Šljivac & Andrej Brandis, 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies," Energies, MDPI, vol. 13(22), pages 1-17, November.
    2. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    3. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    4. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    5. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    6. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Arias García, Rodolfo Manuel & Pérez Abril, Ignacio, 2020. "Photovoltaic module model determination by using the Tellegen’s theorem," Renewable Energy, Elsevier, vol. 152(C), pages 409-420.
    8. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    9. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    10. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    11. Wang, Shinong & Luo, Huan & Ge, Yuan & Liu, Shilin, 2021. "A new approach for modeling photovoltaic modules based on difference equation," Renewable Energy, Elsevier, vol. 168(C), pages 85-96.
    12. Ayop, Razman & Tan, Chee Wei, 2017. "A comprehensive review on photovoltaic emulator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 430-452.
    13. Lucas Deotti & Ivo Silva Júnior & Leonardo Honório & André Marcato, 2021. "Empirical Models Applied to Distributed Energy Resources—An Analysis in the Light of Regulatory Aspects," Energies, MDPI, vol. 14(2), pages 1-32, January.
    14. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    15. Liu, Yi-Hua & Chen, Jing-Hsiao & Huang, Jia-Wei, 2015. "A review of maximum power point tracking techniques for use in partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 436-453.
    16. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    17. Mariusz T. Sarniak & Jacek Wernik & Krzysztof J. Wołosz, 2019. "Application of the Double Diode Model of Photovoltaic Cells for Simulation Studies on the Impact of Partial Shading of Silicon Photovoltaic Modules on the Waveforms of Their Current–Voltage Characteri," Energies, MDPI, vol. 12(12), pages 1-10, June.
    18. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    19. Shi, Nan & Lv, Yanling & Zhang, Yuchen & Zhu, Xianhui, 2023. "Linear fitting Rule of I–V characteristics of thin-film cells based on Bezier function," Energy, Elsevier, vol. 278(PB).
    20. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2646-:d:786883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.