IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1984-d766989.html
   My bibliography  Save this article

Along-Wind Aerodynamic Damping of Wind Turbine Towers: Determination by Wind Tunnel Tests and Impact on Tower Lifetime

Author

Listed:
  • Robert Fontecha

    (Center for Wind and Earthquake Engineering (CWE), RWTH Aachen University, 52062 Aachen, Germany
    These authors contributed equally to this work.)

  • Frank Kemper

    (Center for Wind and Earthquake Engineering (CWE), RWTH Aachen University, 52062 Aachen, Germany
    These authors contributed equally to this work.)

  • Markus Feldmann

    (Center for Wind and Earthquake Engineering (CWE), RWTH Aachen University, 52062 Aachen, Germany)

  • Stefan Witter

    (Center for Wind and Power Drives (CWD), RWTH Aachen University, 52062 Aachen, Germany)

  • Ralf Schelenz

    (Center for Wind and Power Drives (CWD), RWTH Aachen University, 52062 Aachen, Germany)

Abstract

As wind turbines become larger and their towers more slender, aeroelastic effects play a bigger role in the wind turbine’s dynamic behavior. This study focuses on the along-wind aerodynamic damping of wind turbine towers, which has been determined by wind tunnel experiments using the forced oscillation method according to Steckley’s approach. Reynolds number scale effects have been considered through surface roughness modifications using sand paper and a dimple pattern, which have been described in detail. The wind tunnel measurements are performed in sub-critical, critical and trans-critical flow regimes, as well as in low- and high-turbulence conditions, which allows for an accurate description of the required relative roughness and Reynolds numbers for achieving trans-critical conditions. The resulting along-wind aerodynamic damping values according to Steckley’s and Holmes’ approaches are compared, and an analytical relation between them is established. Both approaches are then used in aeroelastic multi-body-simulations of an onshore 6 MW reference wind turbine and their impact on the wind turbine lifetime is evaluated through fatigue proofs at the tower base section. Holmes’ approach seems more appropriate for the application in aeroelastic multi-body simulations. A lifetime extension for the wind turbine tower of approximately 0.4% is achieved for the reference wind turbine tower, which roughly corresponds to 1 to 2 months for 20 years of operation. An analytical expression is given for the estimation of the tower’s aerodynamic damping in parked and operating conditions.

Suggested Citation

  • Robert Fontecha & Frank Kemper & Markus Feldmann & Stefan Witter & Ralf Schelenz, 2022. "Along-Wind Aerodynamic Damping of Wind Turbine Towers: Determination by Wind Tunnel Tests and Impact on Tower Lifetime," Energies, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1984-:d:766989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezaei, Ramtin & Fromme, Paul & Duffour, Philippe, 2018. "Fatigue life sensitivity of monopile-supported offshore wind turbines to damping," Renewable Energy, Elsevier, vol. 123(C), pages 450-459.
    2. Koukoura, Christina & Natarajan, Anand & Vesth, Allan, 2015. "Identification of support structure damping of a full scale offshore wind turbine in normal operation," Renewable Energy, Elsevier, vol. 81(C), pages 882-895.
    3. Robert Fontecha & Frank Kemper & Markus Feldmann, 2019. "On the Determination of the Aerodynamic Damping of Wind Turbines Using the Forced Oscillations Method in Wind Tunnel Experiments," Energies, MDPI, vol. 12(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    2. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    3. Chen, Chuan & Zhou, Jing-wei & Li, Fengming & Zhai, Endi, 2022. "Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: Theory and experiment," Renewable Energy, Elsevier, vol. 187(C), pages 710-727.
    4. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    6. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    7. Gao, Rongzhen & Yang, Junwei & Yang, Hua & Wang, Xiangjun, 2023. "Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions," Renewable Energy, Elsevier, vol. 219(P2).
    8. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    9. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    10. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    11. Liu, Zhenqing & Wang, Yize & Nyangi, Patrice & Zhu, Zhiwen & Hua, Xugang, 2021. "Proposal of a novel GPU-accelerated lifetime optimization method for onshore wind turbine dampers under real wind distribution," Renewable Energy, Elsevier, vol. 168(C), pages 516-543.
    12. Rezaei, Ramtin & Fromme, Paul & Duffour, Philippe, 2018. "Fatigue life sensitivity of monopile-supported offshore wind turbines to damping," Renewable Energy, Elsevier, vol. 123(C), pages 450-459.
    13. Meng, Qingshen & Hua, Xugang & Chen, Chao & Zhou, Shuai & Liu, Feipeng & Chen, Zhengqing, 2022. "Analytical study on the aerodynamic and hydrodynamic damping of the platform in an operating spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 198(C), pages 772-788.
    14. Duc-Vu Ngo & Dong-Hyawn Kim, 2024. "Sensitivity of Seabed Characteristics on the Seismic Performance of Suction Bucket-Supported Offshore Wind Turbines," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    15. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    16. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1984-:d:766989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.