IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1855-d762938.html
   My bibliography  Save this article

Comparison of the Energetic Efficiency of Gas Separation Technologies Using the Physical Optimum by the Example of Oxygen Supply Options

Author

Listed:
  • Samanta A. Weber

    (Department of Energy and Biotechnology, Flensburg University of Applied Sciences (FUAS), 24943 Flensburg, Germany)

  • Dirk Volta

    (Department of Energy and Biotechnology, Flensburg University of Applied Sciences (FUAS), 24943 Flensburg, Germany)

  • Jürgen Kuck

    (Faculty of Utilities Supply Technology, Ostfalia University of Applied Sciences, 38302 Wolfenbüttel, Germany)

Abstract

This study applies the Physical Optimum ( PhO ) as a reference value to rate the efficiency of two technical options for the oxygen supply of a hospital. The systematic comparison of the alternative processes using the PhO as a benchmark for the minimum input (exergy in this case) required to run a process with a certain benefit allows to determine the potential for optimization of each technology. Differences are analyzed by visualizing the losses of each individual production step in a process as well as by the resulting overall energy demand, including the primary energy. Possible alternatives are purchasing liquid oxygen from a cryogenic process or the production by means of Pressure Swing Adsorption (PSA) on site. The cryogenic production shows a lower exergy demand even though it also has a higher potential for optimization. Yet, the total losses, significantly impacted by the unavoidable transportation, sum up, resulting in the conclusion that the PSA is the preferable option overall, considering energy aspects. Finally, additional criteria such as economic, legal, and structural consequences of the respective choices are briefly outlined.

Suggested Citation

  • Samanta A. Weber & Dirk Volta & Jürgen Kuck, 2022. "Comparison of the Energetic Efficiency of Gas Separation Technologies Using the Physical Optimum by the Example of Oxygen Supply Options," Energies, MDPI, vol. 15(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1855-:d:762938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    2. Dirk Volta & Samanta A. Weber, 2021. "The Physical Optimum as an Ideal Reference Value for Balancing Thermodynamic Processes Integrating the Exergetic Evaluation by the Example of Heat Supply," Energies, MDPI, vol. 14(15), pages 1-15, July.
    3. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    4. Paula Marlene Wenzel & Peter Radgen & Jan Westermeyer, 2021. "Comparing Exergy Analysis and Physical Optimum Method Regarding an Induction Furnace," Energies, MDPI, vol. 14(6), pages 1-18, March.
    5. Lukas Kerpen & Achim Schmidt & Bernd Sankol, 2021. "Differentiating the Physical Optimum from the Exergetic Evaluation of a Methane Combustion Process," Energies, MDPI, vol. 14(12), pages 1-17, June.
    6. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiqing & Dong, Xuezhi & Xu, Jian & Zhang, Hualiang & Gao, Qing & Tan, Chunqing, 2019. "Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification," Energy, Elsevier, vol. 171(C), pages 341-359.
    2. Dirk Volta & Samanta A. Weber, 2021. "The Physical Optimum as an Ideal Reference Value for Balancing Thermodynamic Processes Integrating the Exergetic Evaluation by the Example of Heat Supply," Energies, MDPI, vol. 14(15), pages 1-15, July.
    3. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    4. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    5. Zonouz, Masood Jalali & Mehrpooya, Mehdi, 2017. "Parametric study of a hybrid one column air separation unit (ASU) and CO2 power cycle based on advanced exergy cost analysis results," Energy, Elsevier, vol. 140(P1), pages 261-275.
    6. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
    7. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    8. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    10. Fu, Chao & Anantharaman, Rahul & Gundersen, Truls, 2015. "Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants," Energy, Elsevier, vol. 84(C), pages 612-622.
    11. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Jin, Bo & Zhao, Haibo & Zheng, Chuguang & Liang, Zhiwu, 2018. "Control optimization to achieve energy-efficient operation of the air separation unit in oxy-fuel combustion power plants," Energy, Elsevier, vol. 152(C), pages 313-321.
    13. Marco Filippo Torchio & Umberto Lucia & Giulia Grisolia, 2020. "Economic and Human Features for Energy and Environmental Indicators: A Tool to Assess Countries’ Progress towards Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    14. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    15. Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
    16. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2021. "Reply to Variny et al. Comment on “Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361”," Energies, MDPI, vol. 14(20), pages 1-5, October.
    17. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    18. Jiang, Jianrong & Feng, Xiao, 2019. "Energy optimization of ammonia synthesis processes based on oxygen purity under different purification technologies," Energy, Elsevier, vol. 185(C), pages 819-828.
    19. Mu, Ruiqi & Liu, Ming & Huang, Yan & Chong, Daotong & Hu, Zhiping & Yan, Junjie, 2024. "Proposal and performance analysis of a novel hydrogen and power cogeneration system with CO2 capture based on coal supercritical water gasification," Energy, Elsevier, vol. 305(C).
    20. Giulia Grisolia & Umberto Lucia & Marco Filippo Torchio, 2022. "Sustainable Development and Workers Ability: Considerations on the Education Index in the Human Development Index," Sustainability, MDPI, vol. 14(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1855-:d:762938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.