IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1736-d758805.html
   My bibliography  Save this article

Performance Evaluation of a BESS Unit for Black Start and Seamless Islanding Operation

Author

Listed:
  • Seyedmahdi Izadkhast

    (Electrical Engineering Education (EEE), Microelectronics Department, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Rafael Cossent

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Pablo Frías

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Pablo García-González

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Andrea Rodríguez-Calvo

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain
    Current address: EDP Renewables, 28033 Madrid, Spain.)

Abstract

The main purpose of this paper is to evaluate the overall performance of a battery energy storage system (BESS) during (I) grid-connected, (II) black start, and (III) islanded operating modes. To do so, firstly, a novel three-mode controller is proposed and developed. The proportional–integral–derivative (PID) controller is implemented, including the following three components: (1) inertia emulation, (2) frequency-active power and voltage-reactive power droops, and (3) secondary frequency and voltage controllers. Secondly, to effectively evaluate the proposed controller performance under various grid operating conditions during both black start and seamless transition to islanded operation, a set of comprehensive dynamic simulations using Matlab/Simulink is carried out. To this end, the sensitivity analyses on numerous grid operating parameters, such as pre-disturbance grid power, total installed BESS capacity, battery state of charge, unbalanced three-phase load flows, implemented power-frequency controller parameters, and distribution network types with various shares of dynamic and static loads, are performed. Thirdly, to practically improve the seamless transition performance enabling the demand response participation, a fast-controlled thermostatic load scheme is implemented. Simulation results show that the BESS unit using the proposed three-mode controller has great potential to successfully control the frequency and voltage within allowable limits during both islanding and black start modes over a wide range of grid operating conditions.

Suggested Citation

  • Seyedmahdi Izadkhast & Rafael Cossent & Pablo Frías & Pablo García-González & Andrea Rodríguez-Calvo, 2022. "Performance Evaluation of a BESS Unit for Black Start and Seamless Islanding Operation," Energies, MDPI, vol. 15(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1736-:d:758805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naowarat Tephiruk & Weerawoot Kanokbannakorn & Thongchart Kerdphol & Yasunori Mitani & Komsan Hongesombut, 2018. "Fuzzy Logic Control of a Battery Energy Storage System for Stability Improvement in an Islanded Microgrid," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    2. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    3. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    2. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megan Culler & Hannah Burroughs, 2021. "Cybersecurity Considerations for Grid-Connected Batteries with Hardware Demonstrations," Energies, MDPI, vol. 14(11), pages 1-20, May.
    2. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    3. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    4. Oleksandr Miroshnyk & Oleksandr Moroz & Taras Shchur & Andrii Chepizhnyi & Mohamed Qawaqzeh & Sławomir Kocira, 2023. "Investigation of Smart Grid Operation Modes with Electrical Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-13, March.
    5. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    6. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    7. Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2022. "Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities," Energies, MDPI, vol. 15(20), pages 1-25, October.
    8. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    9. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    10. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    11. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    12. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    13. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    15. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    16. Harriet Bulkeley & Pauline M McGuirk & Robyn Dowling, 2016. "Making a smart city for the smart grid? The urban material politics of actualising smart electricity networks," Environment and Planning A, , vol. 48(9), pages 1709-1726, September.
    17. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    18. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    19. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    20. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1736-:d:758805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.