IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1405-d749772.html
   My bibliography  Save this article

Examining the Performance of Implantable-Grade Lithium-Ion Cells after Overdischarge and Thermally Accelerated Aging

Author

Listed:
  • Jonathon R. Harding

    (Exponent, Inc., 1075 Worcester St., Natick, MA 01760, USA)

  • Binghong Han

    (Exponent, Inc., 1075 Worcester St., Natick, MA 01760, USA)

  • Samuel B. Madden

    (Exponent, Inc., 1075 Worcester St., Natick, MA 01760, USA)

  • Quinn C. Horn

    (Exponent, Inc., 1075 Worcester St., Natick, MA 01760, USA)

Abstract

For implanted medical devices containing rechargeable batteries, maximizing battery lifetime is paramount as surgery is required for battery replacement. In non-life-sustaining applications (e.g., spinal cord stimulators or sacral nerve modulation), these implants may be left unused and unmaintained for extended periods, according to patient preference or in the case of unexpected life events. In this study, we examine the performance of two commercial lithium-ion cells intended for implantable neurostimulators (using lithium titanium oxide (LTO) and graphite as the negative electrode) when subjected to repeated deep overdischarge and to aging at a high state of charge (SOC). The graphite-based cells exhibited significant performance decline and swelling after overdischarge and became unable to store a charge after 42 days at 0 V. In contrast, the LTO-based cells exhibited minimal changes in performance even after 84 days (the length of the study) at 0 V. When subjected to an accelerated aging protocol at 100% SOC, the graphite-based cells were found to age more rapidly than the LTO cells, which exhibited minimal aging over the course of the study period. These results show that practical LTO-based lithium-ion cells are much more tolerant of abuse as a result of neglect and misuse and are worth considering for use in high-value applications where battery replacement is difficult or impossible.

Suggested Citation

  • Jonathon R. Harding & Binghong Han & Samuel B. Madden & Quinn C. Horn, 2022. "Examining the Performance of Implantable-Grade Lithium-Ion Cells after Overdischarge and Thermally Accelerated Aging," Energies, MDPI, vol. 15(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1405-:d:749772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    2. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    2. Singh, Deepak Kumar & Tirkey, Jeewan Vachan, 2022. "Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas," Energy, Elsevier, vol. 238(PC).
    3. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    4. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    5. Yuan Chen & Yigang He & Zhong Li & Liping Chen, 2019. "A Combined Multiple Factor Degradation Model and Online Verification for Electric Vehicle Batteries," Energies, MDPI, vol. 12(22), pages 1-12, November.
    6. Zhiwei Liao & Dongze Lv & Qiyun Hu & Xiang Zhang, 2024. "Review on Aging Risk Assessment and Life Prediction Technology of Lithium Energy Storage Batteries," Energies, MDPI, vol. 17(15), pages 1-19, July.
    7. Guorui Zheng & Han Xu & Fan Liu & Jianwen Dong, 2024. "Impact of Plant Layout on Microclimate of Summer Courtyard Space Based on Orthogonal Experimental Design," Sustainability, MDPI, vol. 16(11), pages 1-22, May.
    8. E, Jiaqiang & Yi, Feng & Li, Wenjie & Zhang, Bin & Zuo, Hongyan & Wei, Kexiang & Chen, Jingwei & Zhu, Hong & Zhu, Hao & Deng, Yuanwang, 2021. "Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China," Energy, Elsevier, vol. 226(C).
    9. Guan, Ting & Sun, Shun & Gao, Yunzhi & Du, Chunyu & Zuo, Pengjian & Cui, Yingzhi & Zhang, Lingling & Yin, Geping, 2016. "The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries," Applied Energy, Elsevier, vol. 177(C), pages 1-10.
    10. Ghassemi, Alireza & Chakraborty Banerjee, Parama & Hollenkamp, Anthony F. & Zhang, Zhe & Bahrani, Behrooz, 2021. "Effects of alternating current on Li-ion battery performance: Monitoring degradative processes with in-situ characterization techniques," Applied Energy, Elsevier, vol. 284(C).
    11. Elham Hosseinzadeh & James Marco & Paul Jennings, 2017. "Electrochemical-Thermal Modelling and Optimisation of Lithium-Ion Battery Design Parameters Using Analysis of Variance," Energies, MDPI, vol. 10(9), pages 1-22, August.
    12. Yang, Xiaolong & Chen, Yongji & Li, Bin & Luo, Dong, 2020. "Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model," Energy, Elsevier, vol. 191(C).
    13. Yulong Li & Zhifu Zhou & Laisuo Su & Minli Bai & Linsong Gao & Yang Li & Xuanyu Liu & Yubai Li & Yongchen Song, 2022. "Numerical Simulations for Indirect and Direct Cooling of 54 V LiFePO 4 Battery Pack," Energies, MDPI, vol. 15(13), pages 1-30, June.
    14. Jiang, Z.Y. & Qu, Z.G. & Zhou, L. & Tao, W.Q., 2017. "A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method," Applied Energy, Elsevier, vol. 194(C), pages 530-539.
    15. E, Jiaqiang & Zeng, Yan & Jin, Yu & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2020. "Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis," Energy, Elsevier, vol. 211(C).
    16. Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
    17. Román-Ramírez, L.A. & Marco, J., 2022. "Design of experiments applied to lithium-ion batteries: A literature review," Applied Energy, Elsevier, vol. 320(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1405-:d:749772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.