IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5910-d637924.html
   My bibliography  Save this article

Solar Coatings Based on Ag Infrared Reflector with High Stability at Medium and High Temperature

Author

Listed:
  • Salvatore Esposito

    (Portici Research Centre, ENEA, P.le E. Fermi 1, 80055 Portici, Italy)

  • Antonio D’Angelo

    (Portici Research Centre, ENEA, P.le E. Fermi 1, 80055 Portici, Italy)

  • Claudia Diletto

    (Portici Research Centre, ENEA, P.le E. Fermi 1, 80055 Portici, Italy)

  • Antonio Guglielmo

    (Portici Research Centre, ENEA, P.le E. Fermi 1, 80055 Portici, Italy)

  • Michela Lanchi

    (Casaccia Research Centre, ENEA, Via Anguillarese 301, 00123 S. Maria di Galeria, Italy)

  • Gabriella Rossi

    (Portici Research Centre, ENEA, P.le E. Fermi 1, 80055 Portici, Italy)

Abstract

The manufacturing of thermally stable solar coatings with high photo-thermal performance represents a key factor for the further deployment of the CSP technology. Since 2005, ENEA has been developing solar coatings suitable for medium and high temperature applications based on the technology of double nitride cermet, by employing silver and tungsten as infrared reflectors, respectively. Thanks to the high infrared reflectance of silver, the corresponding coatings have better optical performance than those with tungsten; however, the high diffusivity of silver compromises its use at high temperature. In order to improve the structural and chemical stability at medium and high temperature of coatings based on silver, this infrared reflector was placed between compact and uniform layers of metal and cermet manufactured by using high-energy and fast deposition processes. In particular, an Unbalanced Magnetron cathode was adopted to promote an ion-assisted deposition process that improved uniformity and compactness of the metal and cermet films. The new coating shows no photo-thermal parameters degradation after 25 years of service at the operating temperature of 400 °C, while its photo-thermal conversion efficiency decreases by only 1.5% after 25 years of service at an operating temperature of 514 °C.

Suggested Citation

  • Salvatore Esposito & Antonio D’Angelo & Claudia Diletto & Antonio Guglielmo & Michela Lanchi & Gabriella Rossi, 2021. "Solar Coatings Based on Ag Infrared Reflector with High Stability at Medium and High Temperature," Energies, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5910-:d:637924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    3. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    4. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    5. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    4. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    5. Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
    6. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    7. Paloma Martínez-Merino & Rodrigo Alcántara & Teresa Aguilar & Juan Jesús Gallardo & Iván Carrillo-Berdugo & Roberto Gómez-Villarejo & Mabel Rodríguez-Fernández & Javier Navas, 2019. "Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power," Energies, MDPI, vol. 12(24), pages 1-11, December.
    8. Son, In Woo & Jeong, Yongju & Son, Seongmin & Park, Jung Hwan & Lee, Jeong Ik, 2022. "Techno-economic evaluation of solar-nuclear hybrid system for isolated grid," Applied Energy, Elsevier, vol. 306(PA).
    9. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    10. Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
    11. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    12. Cristina Prieto & Alfonso Rodríguez-Sánchez & F. Javier Ruiz-Cabañas & Luisa F. Cabeza, 2019. "Feasibility Study of Freeze Recovery Options in Parabolic Trough Collector Plants Working with Molten Salt as Heat Transfer Fluid," Energies, MDPI, vol. 12(12), pages 1-20, June.
    13. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    14. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    15. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    16. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    17. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    18. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    19. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    20. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5910-:d:637924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.