IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1330-d747486.html
   My bibliography  Save this article

Support Vector Quantile Regression for the Post-Processing of Meso-Scale Ensemble Prediction System Data in the Kanto Region: Solar Power Forecast Reducing Overestimation

Author

Listed:
  • Takahiro Takamatsu

    (Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST (FREA), 2-2-9, Machiikedai, Koriyama 963-0298, Japan)

  • Hideaki Ohtake

    (Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST (FREA), 2-2-9, Machiikedai, Koriyama 963-0298, Japan
    Meteorological Research Institute, 1-1, Nagamine, Tsukuba 305-0052, Japan)

  • Takashi Oozeki

    (Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST (FREA), 2-2-9, Machiikedai, Koriyama 963-0298, Japan)

Abstract

Although the recent development of solar power forecasting through machine learning approaches, such as the machine learning models based on numerical weather prediction (NWP) data, has been remarkable, their extreme error requires an increase in the amount of reserve capacity procurement used for the power system safety. Hence, a reduction of the serious overestimation is necessary for efficient grid operation. However, despite the importance of the above issue, few studies have focused on the model design, suppressing serious errors, to the best of the authors’ knowledge. This study investigates a prediction model that can reduce the huge overestimation of the solar irradiance, which poses a risk to the power system. The specific approaches used are as follows: the employment of Support Vector Quantile Regression (SVQR), the utilization of Meso-scale Ensemble Prediction System (MEPS, Meso-scale EPS for the regions of Japan) data, which is based on the forecasts from Meso-scale Model (MSM) as explanatory variables, and the hyperparameter adjustment. The performance of the models is verified in the one day-ahead forecasting for surface solar irradiance at five sites in the Kanto region as the numerical simulation, where their forecasting errors are measured by the root mean square error (RMSE) and the 3 σ error, which corresponds to the 99.87% quantile error of the order statistics. The test results indicate the following findings: the SVRs’ RMSE and 3 σ error tend to be trade-offs in the case of varying the penalty of the regularization term; by using SVR as a post-processing tool for MSM or MEPS data, both of the score of their metrics can be improved from original data; the MEPS-based SVQR (MEPS-SVQR) could provide superior performance in both metrics in comparison with the MSM-based SVQR (MSM-SVQR) if the parameters are properly adjusted. Although the time period and the type of MEPS data used for the validation are limited, our report is expected to help the design of NWP-based machine learning models to enable short-term solar power forecasts with a low risk of overestimation.

Suggested Citation

  • Takahiro Takamatsu & Hideaki Ohtake & Takashi Oozeki, 2022. "Support Vector Quantile Regression for the Post-Processing of Meso-Scale Ensemble Prediction System Data in the Kanto Region: Solar Power Forecast Reducing Overestimation," Energies, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1330-:d:747486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eseye, Abinet Tesfaye & Zhang, Jianhua & Zheng, Dehua, 2018. "Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information," Renewable Energy, Elsevier, vol. 118(C), pages 357-367.
    2. Frías-Paredes, Laura & Mallor, Fermín & León, Teresa & Gastón-Romeo, Martín, 2016. "Introducing the Temporal Distortion Index to perform a bidimensional analysis of renewable energy forecast," Energy, Elsevier, vol. 94(C), pages 180-194.
    3. Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
    4. Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
    5. Philippe Lauret & Mathieu David & Hugo T. C. Pedro, 2017. "Probabilistic Solar Forecasting Using Quantile Regression Models," Energies, MDPI, vol. 10(10), pages 1-17, October.
    6. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    7. Salcedo-Sanz, S. & Jiménez-Fernández, S. & Aybar-Ruiz, A. & Casanova-Mateo, C. & Sanz-Justo, J. & García-Herrera, R., 2017. "A CRO-species optimization scheme for robust global solar radiation statistical downscaling," Renewable Energy, Elsevier, vol. 111(C), pages 63-76.
    8. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    9. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    2. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    3. Le Gal La Salle, Josselin & Badosa, Jordi & David, Mathieu & Pinson, Pierre & Lauret, Philippe, 2020. "Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts," Renewable Energy, Elsevier, vol. 162(C), pages 1321-1339.
    4. Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    5. Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).
    6. Verbois, Hadrien & Blanc, Philippe & Huva, Robert & Saint-Drenan, Yves-Marie & Rusydi, Andrivo & Thiery, Alexandre, 2020. "Beyond quadratic error: Case-study of a multiple criteria approach to the performance assessment of numerical forecasts of solar irradiance in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Probabilistic solar power forecasting based on weather scenario generation," Applied Energy, Elsevier, vol. 266(C).
    8. Seungbeom Nam & Jin Hur, 2018. "Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models," Energies, MDPI, vol. 11(11), pages 1-15, November.
    9. Takahiro Takamatsu & Hideaki Ohtake & Takashi Oozeki & Tosiyuki Nakaegawa & Yuki Honda & Masahiro Kazumori, 2021. "Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System," Energies, MDPI, vol. 14(11), pages 1-18, June.
    10. Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
    11. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    13. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    14. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    15. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    16. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    17. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    18. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    19. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    20. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1330-:d:747486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.