IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11989-d668094.html
   My bibliography  Save this article

Environmental Analysis of the Use of Liquefied Natural Gas in Maritime Transport within the Port Environment

Author

Listed:
  • Tomas Gil-Lopez

    (Building Technology Department, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Amparo Verdu-Vazquez

    (Building Technology Department, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

Sustainable transport is gaining increasing importance in the political agenda. All modes of transport are obliged to reduce their emissions by both national and international governmental bodies, this requirement being even more necessary in the case of ports due to their traffic density and proximity to the city. The objective of this research is to estimate the atmospheric emissions generated during the operational phases, which are carried out close to Spanish ports. Due to its geographical position, Spain benefits from the routes of the Atlantic corridor and Mediterranean corridor belonging to the principal European transport network. The method uses detailed information about ship movements and ship categories (ship type, engine type, fuel type, etc.). From an environmental point of view, the results show that engines powered by Liquefied Natural Gas, compared to traditional fuels, save between 28% in the case of freight ships and 31% for passenger ships in the emission of CO 2 into the atmosphere (52 tons per journey). On the other hand, the saving in NO x emissions is reduced by 87%. In addition, SO x emissions are completely eliminated and PM emissions are reduced to negligible values.

Suggested Citation

  • Tomas Gil-Lopez & Amparo Verdu-Vazquez, 2021. "Environmental Analysis of the Use of Liquefied Natural Gas in Maritime Transport within the Port Environment," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11989-:d:668094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
    2. Gil-Lopez, Tomas & Sanchez-Sanchez, Agustin & Gimenez-Molina, Carmen, 2014. "Energy, environmental and economic analysis of the ventilation system of enclosed parking garages: Discrepancies with the current regulations," Applied Energy, Elsevier, vol. 113(C), pages 622-630.
    3. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    5. Grusche J. Seithe & Alexandra Bonou & Dimitrios Giannopoulos & Chariklia A. Georgopoulou & Maria Founti, 2020. "Maritime Transport in a Life Cycle Perspective: How Fuels, Vessel Types, and Operational Profiles Influence Energy Demand and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(11), pages 1-20, May.
    6. Michele Acciaro & Thierry Vanelslander & Christa Sys & Claudio Ferrari & Athena Roumboutsos & Genevieve Giuliano & Jasmine Siu Lee Lam & Seraphim Kapros, 2014. "Environmental sustainability in seaports: a framework for successful innovation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(5), pages 480-500, September.
    7. Gibbs, David & Rigot-Muller, Patrick & Mangan, John & Lalwani, Chandra, 2014. "The role of sea ports in end-to-end maritime transport chain emissions," Energy Policy, Elsevier, vol. 64(C), pages 337-348.
    8. Alice Bows-Larkin, 2015. "All adrift: aviation, shipping, and climate change policy," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 681-702, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Assunta Di Vaio & Luisa Varriale, 2018. "Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations," Sustainability, MDPI, vol. 10(3), pages 1-35, March.
    3. Theo Notteboom & Jasmine Siu Lee Lam, 2018. "The Greening of Terminal Concessions in Seaports," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    4. Anas S. Alamoush & Dimitrios Dalaklis & Fabio Ballini & Aykut I. Ölcer, 2023. "Consolidating Port Decarbonisation Implementation: Concept, Pathways, Barriers, Solutions, and Opportunities," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    5. Brewer, Thomas L., 2019. "Black carbon emissions and regulatory policies in transportation," Energy Policy, Elsevier, vol. 129(C), pages 1047-1055.
    6. Heilig, Leonard & Lalla-Ruiz, Eduardo & Voß, Stefan, 2017. "Multi-objective inter-terminal truck routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 178-202.
    7. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    8. Jiang, Meizhi & Wang, Benmei & Hao, Yingjun & Chen, Shijun & Wen, Yuanqiao & Yang, Zaili, 2024. "Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China," Transport Policy, Elsevier, vol. 145(C), pages 177-186.
    9. Eric Tamatey Lawer & Johannes Herbeck & Michael Flitner, 2019. "Selective Adoption: How Port Authorities in Europe and West Africa Engage with the Globalizing ‘Green Port’ Idea," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    10. Sofia Agostinelli & Mehdi Neshat & Meysam Majidi Nezhad & Giuseppe Piras & Davide Astiaso Garcia, 2022. "Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    11. Martínez-Moya, Julián & Vazquez-Paja, Barbara & Gimenez Maldonado, Jose Andrés, 2019. "Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia," Energy Policy, Elsevier, vol. 131(C), pages 312-319.
    12. Anas S. Alamoush & Fabio Ballini & Aykut I. Ölçer, 2021. "Revisiting port sustainability as a foundation for the implementation of the United Nations Sustainable Development Goals (UN SDGs)," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-40, December.
    13. Chun-Yu Lin & Gui-Lin Dai & Su Wang & Xiu-Mei Fu, 2022. "The Evolution of Green Port Research: A Knowledge Mapping Analysis," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    14. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    15. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    16. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    17. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    18. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    19. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    20. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11989-:d:668094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.