IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3410-d1511869.html
   My bibliography  Save this article

Hierarchical Optimal Dispatching of Electric Vehicles Based on Photovoltaic-Storage Charging Stations

Author

Listed:
  • Ziyuan Liu

    (School of Innovation and Entrepreneurship, Wuhan Institute of Technology, No.206, Guanggu 1st Road, Wuhan 430205, China
    These authors contributed equally to this work.)

  • Junjing Tan

    (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, No.206, Guanggu 1st Road, Wuhan 430205, China
    These authors contributed equally to this work.)

  • Wei Guo

    (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, No.206, Guanggu 1st Road, Wuhan 430205, China)

  • Chong Fan

    (Jinguan Electric Co., Ltd., Neixiang County Industrial Park, Nanyang 474350, China)

  • Wenhe Peng

    (School of Economics and Management, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China)

  • Zhijian Fang

    (School of Automation, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China)

  • Jingke Gao

    (Institute of Advanced Study, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China)

Abstract

Electric vehicles, known for their eco-friendliness and rechargeable–dischargeable capabilities, can serve as energy storage batteries to support the operation of the microgrid in certain scenarios. Therefore, photovoltaic-storage electric vehicle charging stations have emerged as an important solution to address the challenges posed by energy interconnection networks. However, electric vehicle charging loads exhibit notable randomness, potentially altering load characteristics during certain periods and posing challenges to the stable operation of microgrids. To address this challenge, this paper proposes a hierarchical optimal dispatching strategy based on photovoltaic-storage charging stations. The strategy utilizes a dynamic electricity pricing model and the adaptive particle swarm optimization algorithm to effectively manage electric vehicle charging loads. By decomposing the dispatching task into multiple layers, the strategy effectively solves the problems of the “curse of dimensionality” and slow convergence associated with large numbers of electric vehicles. Simulation results demonstrate that the strategy can effectively achieve peak shaving and valley filling, reducing the load variance of the microgrid by 24.93%, and significantly reduce electric vehicle charging costs and distribution network losses, with a reduction of 92.29% in electric vehicle charging costs and 32.28% in microgrid losses compared to unorganized charging. Additionally, this strategy can meet the travel demands of electric vehicle owners while providing convenient charging services.

Suggested Citation

  • Ziyuan Liu & Junjing Tan & Wei Guo & Chong Fan & Wenhe Peng & Zhijian Fang & Jingke Gao, 2024. "Hierarchical Optimal Dispatching of Electric Vehicles Based on Photovoltaic-Storage Charging Stations," Mathematics, MDPI, vol. 12(21), pages 1-13, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3410-:d:1511869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    2. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    2. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    3. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    4. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    5. Zhang, Y.Q. & Chen, J.J. & Wang, Y.X. & Feng, L., 2024. "Enhancing resilience of agricultural microgrid through electricity–heat–water based multi-energy hub considering irradiation intensity uncertainty," Renewable Energy, Elsevier, vol. 220(C).
    6. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    7. Adetunji, Kayode E. & Hofsajer, Ivan W. & Abu-Mahfouz, Adnan M. & Cheng, Ling, 2022. "An optimization planning framework for allocating multiple distributed energy resources and electric vehicle charging stations in distribution networks," Applied Energy, Elsevier, vol. 322(C).
    8. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    9. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).
    10. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    11. Luo, Zhiqiang & Liu, Hui & Wang, Ni & Zhao, Teyang & Tian, Jiarui, 2024. "Optimal adaptive decentralized under-frequency load shedding for islanded smart distribution network considering wind power uncertainty," Applied Energy, Elsevier, vol. 365(C).
    12. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    13. Tingke Fang & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration," Energies, MDPI, vol. 17(22), pages 1-20, November.
    14. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    16. Fernando A. Assis & Francisco C. R. Coelho & José Filho C. Castro & Antonio R. Donadon & Ronaldo A. Roncolatto & Pedro A. C. Rosas & Vittoria E. M. S. Andrade & Rafael G. Bento & Luiz C. P. Silva & Jo, 2024. "Assessment of Regulatory and Market Challenges in the Economic Feasibility of a Nanogrid: A Brazilian Case," Energies, MDPI, vol. 17(2), pages 1-18, January.
    17. Yuvaraja Shanmugam & Narayanamoorthi Rajamanickam & Roobaea Alroobaea & Abdulkareem Afandi, 2024. "Driving towards Sustainability: Wireless Charging of Low-Speed Vehicles with PDM-Based Active Bridge Rectifiers," Sustainability, MDPI, vol. 16(9), pages 1-24, May.
    18. Hossein Karimkhan Zand & Kazem Mazlumi & Amir Bagheri & Hamed Hashemi-Dezaki, 2023. "Optimal Protection Scheme for Enhancing AC Microgrids Stability against Cascading Outages by Utilizing Events Scale Reduction Technique and Fuzzy Zero-Violation Clustering Algorithm," Sustainability, MDPI, vol. 15(21), pages 1-27, November.
    19. Asjad Ali & Abdullah Aftab & Muhammad Nadeem Akram & Shoaib Awan & Hafiz Abdul Muqeet & Zeeshan Ahmad Arfeen, 2024. "Residential Prosumer Energy Management System with Renewable Integration Considering Multi-Energy Storage and Demand Response," Sustainability, MDPI, vol. 16(5), pages 1-27, March.
    20. Zhou, Liwei & Preindl, Matthias, 2023. "Reconfigurable hybrid micro-grid with standardized power module for high performance energy conversion," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3410-:d:1511869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.