IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p716-d728491.html
   My bibliography  Save this article

A Comparative Analysis of the Characteristics of Platform Motion of a Floating Offshore Wind Turbine Based on Pitch Controllers

Author

Listed:
  • Chan Roh

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), 1312-32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Korea)

  • Yoon-Jin Ha

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), 1312-32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Korea)

  • Hyeon-Jeong Ahn

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), 1312-32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Korea)

  • Kyong-Hwan Kim

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), 1312-32 Yuseong-daero, Yuseong-gu, Daejeon 34103, Korea)

Abstract

The installation of fixed offshore wind power systems at greater water depths requires a floating body at the foundation of the system. However, this presents various issues. This study analyzes the characteristics of the platform motion of a floating offshore wind turbine system based on the performance of the pitch controller. The motion characteristics of the platform in a floating offshore wind power generation system, change according to the response speed of the blade pitch controller since the wind turbine is installed on a floating platform unlike the existing onshore wind power generation system. Therefore, this study analyzes the platform motion characteristics of a floating offshore wind turbine system using various pitch controllers that have been applied in previous studies. Consequently, an appropriate pitch controller is proposed for the floating offshore wind turbine system. The floating offshore wind turbine system developed in this study consists of an NREL 5-MW class wind turbine and an OC4 semi-submersible floating platform; the pitch controller is evaluated using FAST-v8 developed by NREL. The results of this study demonstrate that the pitch controller reduces the platform motion of the floating offshore wind power generation system, considering both the individual pitch control and the negative damping phenomenon. Additionally, it is confirmed that the output increases by approximately 0.42%, while the output variability decreases by 19.3% through the reduction of the platform movement.

Suggested Citation

  • Chan Roh & Yoon-Jin Ha & Hyeon-Jeong Ahn & Kyong-Hwan Kim, 2022. "A Comparative Analysis of the Characteristics of Platform Motion of a Floating Offshore Wind Turbine Based on Pitch Controllers," Energies, MDPI, vol. 15(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:716-:d:728491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    2. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaping Cui & Zhigang Cao & Pin Lyu & Huaiwu Peng & Quankun Li & Ruixian Ma & Yingming Liu, 2024. "Research on the Blades and Performance of Semi-Submersible Wind Turbines with Different Capacities," Energies, MDPI, vol. 17(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    3. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    4. Luengo, Jorge & Negro, Vicente & García-Barba, Javier & López-Gutiérrez, José-Santos & Esteban, M. Dolores, 2019. "New detected uncertainties in the design of foundations for offshore Wind Turbines," Renewable Energy, Elsevier, vol. 131(C), pages 667-677.
    5. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    6. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    7. Baisthakur, Shubham & Fitzgerald, Breiffni, 2024. "Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation," Renewable Energy, Elsevier, vol. 224(C).
    8. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    9. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    10. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    11. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
    12. Asad Rehman & Mohsin Ali Koondhar & Zafar Ali & Munawar Jamali & Ragab A. El-Sehiemy, 2023. "Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    13. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    14. Ying Gong & Zhengbao Yang & Xiaobiao Shan & Yubiao Sun & Tao Xie & Yunlong Zi, 2019. "Capturing Flow Energy from Ocean and Wind," Energies, MDPI, vol. 12(11), pages 1-22, June.
    15. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    16. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    17. Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.
    18. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    19. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    20. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:716-:d:728491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.