IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3259-d1427810.html
   My bibliography  Save this article

Research on the Blades and Performance of Semi-Submersible Wind Turbines with Different Capacities

Author

Listed:
  • Jiaping Cui

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China)

  • Zhigang Cao

    (Goldwind Science & Technology Co., Ltd., Urumqi 830026, China)

  • Pin Lyu

    (Goldwind Science & Technology Co., Ltd., Urumqi 830026, China)

  • Huaiwu Peng

    (Power China Northwest Engineering Co., Ltd., Xi’an 710065, China)

  • Quankun Li

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China)

  • Ruixian Ma

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China)

  • Yingming Liu

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract

With the gradual increase in the maturity of wind energy technology, floating offshore wind turbines have progressively moved from small-capacity demonstrations to large-capacity commercial applications. As a direct component of wind turbines used to capture wind energy, an increase in the blade length directly leads to an increase in blade flexibility and a decrease in aerodynamic performance. Furthermore, if the floater has an additional six degrees of freedom, the movement and load of the blade under the combined action of wind and waves are more complicated. In this work, two types of semi-submersible wind turbines with different capacities are used as the research objects, and the load and motion characteristics of the blades of these floating offshore wind turbines are studied. Through the analysis of the simulation data, the following conclusions are drawn: with the increase in the capacity of the wind turbine, the flexible deformation of the blade increases, the movement range of the blade tip becomes larger, the blade root load increases, and the power fluctuation is more obvious. Compared with the bottom-fixed wind turbine, the flexible blade deformation of the floating offshore wind turbine is smaller; however, the blade root load is more dispersed, and the power output is more unstable and lower.

Suggested Citation

  • Jiaping Cui & Zhigang Cao & Pin Lyu & Huaiwu Peng & Quankun Li & Ruixian Ma & Yingming Liu, 2024. "Research on the Blades and Performance of Semi-Submersible Wind Turbines with Different Capacities," Energies, MDPI, vol. 17(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3259-:d:1427810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youngjin Kim & Oh Joon Kwon, 2019. "Effect of Platform Motion on Aerodynamic Performance and Aeroelastic Behavior of Floating Offshore Wind Turbine Blades," Energies, MDPI, vol. 12(13), pages 1-24, June.
    2. Greco, Luca & Testa, Claudio, 2021. "Wind turbine unsteady aerodynamics and performance by a free-wake panel method," Renewable Energy, Elsevier, vol. 164(C), pages 444-459.
    3. Chan Roh & Yoon-Jin Ha & Hyeon-Jeong Ahn & Kyong-Hwan Kim, 2022. "A Comparative Analysis of the Characteristics of Platform Motion of a Floating Offshore Wind Turbine Based on Pitch Controllers," Energies, MDPI, vol. 15(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    2. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    3. Franck Bertagnolio & Michaela Herr & Kaj Dam Madsen, 2023. "A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    4. Jianhua Zhang & Won-Hee Kang & Ke Sun & Fushun Liu, 2019. "Reliability-Based Serviceability Limit State Design of a Jacket Substructure for an Offshore Wind Turbine," Energies, MDPI, vol. 12(14), pages 1-16, July.
    5. Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3259-:d:1427810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.