IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1152-d742092.html
   My bibliography  Save this article

Effective Thermal Conductivity and Borehole Thermal Resistance in Selected Borehole Heat Exchangers for the Same Geology

Author

Listed:
  • Tomasz Sliwa

    (Laboratory of Geoenergetics, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Patryk Leśniak

    (Laboratory of Geoenergetics, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Aneta Sapińska-Śliwa

    (Laboratory of Geoenergetics, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Marc A. Rosen

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

Abstract

Investigating the constructions of borehole heat exchangers with high efficiency (unit heat transfer between the heat carrier and ground) is important. One of the means to improve efficiency is the use of the most efficient construction of the borehole heat exchanger. The paper describes research on borehole heat exchangers’ thermal efficiency, which is mainly characterized by parameters obtained from a thermal response test: effective thermal conductivity and borehole thermal resistivity. The borehole heat exchangers of the Laboratory of Geoenergetics in Poland were studied. Based on thermal response test interpretation and empirical equations, one of which is proprietary, the heat transfer is calculated independent of the duration of the thermal response test. Other conditions for using borehole heat exchangers in downtowns are discussed. The research aims to determine the best borehole heat exchanger design from five basic possibilities studied. A lack of unequivocal statements regarding this matter in the literature was observed. The influence of the interpretation method on the research results is determined. A single U-tube system filled with gravel is shown to be the most advantageous design by a very small margin. The applied interpretation methods, however, confirm the hitherto ambiguity in the selection of the best construction. The maximum heat carrier temperature at the end of thermal response tests was 32 °C for a geological profile mostly made up of clay (low thermal conductivity) and 23 °C for Carpathian flysch (sandstones and shales, with a higher value of conductivity).

Suggested Citation

  • Tomasz Sliwa & Patryk Leśniak & Aneta Sapińska-Śliwa & Marc A. Rosen, 2022. "Effective Thermal Conductivity and Borehole Thermal Resistance in Selected Borehole Heat Exchangers for the Same Geology," Energies, MDPI, vol. 15(3), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1152-:d:742092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koohi-Fayegh, Seama & Rosen, Marc A., 2012. "Examination of thermal interaction of multiple vertical ground heat exchangers," Applied Energy, Elsevier, vol. 97(C), pages 962-969.
    2. Zhang, Changxing & Chen, Ping & Liu, Yufeng & Sun, Shicai & Peng, Donggen, 2015. "An improved evaluation method for thermal performance of borehole heat exchanger," Renewable Energy, Elsevier, vol. 77(C), pages 142-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Changxing & Wang, Yusheng & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2018. "Computational methods for ground thermal response of multiple borehole heat exchangers: A review," Renewable Energy, Elsevier, vol. 127(C), pages 461-473.
    2. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    3. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    4. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    5. Alaie, Omid & Maddahian, Reza & Heidarinejad, Ghassem, 2021. "Investigation of thermal interaction between shallow boreholes in a GSHE using the FLS-STRCM model," Renewable Energy, Elsevier, vol. 175(C), pages 1137-1150.
    6. Seung-Min Lee & Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Proposition of Design Capacity of Borehole Heat Exchangers for Use in the Schematic-Design Stage," Energies, MDPI, vol. 14(4), pages 1-17, February.
    7. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    8. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    9. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    10. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.
    12. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    13. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    14. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    15. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    16. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    17. Tomasz Sliwa & Marc A. Rosen, 2015. "Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review," Sustainability, MDPI, vol. 7(10), pages 1-22, September.
    18. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    19. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    20. Zhou, Zhihua & Wu, Shengwei & Du, Tao & Chen, Guanyi & Zhang, Zhiming & Zuo, Jian & He, Qing, 2016. "The energy-saving effects of ground-coupled heat pump system integrated with borehole free cooling: A study in China," Applied Energy, Elsevier, vol. 182(C), pages 9-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1152-:d:742092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.