IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p404-d479278.html
   My bibliography  Save this article

Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter

Author

Listed:
  • Sara J. Ríos

    (Faculty of Electrical and Computer Engineering, ESPOL Polytechnic University, Campus Gustavo Galindo, Guayaquil 09-01-5863, Ecuador)

  • Daniel J. Pagano

    (Department of Automation and Systems, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil)

  • Kevin E. Lucas

    (Faculty of Electrical and Computer Engineering, ESPOL Polytechnic University, Campus Gustavo Galindo, Guayaquil 09-01-5863, Ecuador
    Department of Automation and Systems, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil)

Abstract

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.

Suggested Citation

  • Sara J. Ríos & Daniel J. Pagano & Kevin E. Lucas, 2021. "Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter," Energies, MDPI, vol. 14(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:404-:d:479278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/404/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    3. Sakda Somkun & Toshiro Sato & Viboon Chunkag & Akekachai Pannawan & Pornnipa Nunocha & Tawat Suriwong, 2021. "Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter," Energies, MDPI, vol. 14(9), pages 1-21, April.
    4. Bor-Ren Lin, 2021. "Implementation of a Resonant Converter with Topology Morphing to Achieve Bidirectional Power Flow," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Muhammad Husnain Ashfaq & Zulfiqar Ali Memon & Muhammad Akmal Chaudhary & Muhammad Talha & Jeyraj Selvaraj & Nasrudin Abd Rahim & Muhammad Majid Hussain, 2022. "Robust Dynamic Control of Constant-Current-Source-Based Dual-Active-Bridge DC/DC Converter Used for Off-Board EV Charging," Energies, MDPI, vol. 15(23), pages 1-33, November.
    6. Basma Salah & Hany M. Hasanien & Fadia M. A. Ghali & Yasser M. Alsayed & Shady H. E. Abdel Aleem & Adel El-Shahat, 2022. "African Vulture Optimization-Based Optimal Control Strategy for Voltage Control of Islanded DC Microgrids," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    7. Yuto Takayama & Hiroaki Yamada, 2021. "Variable DC-Link Voltage Control of Dual Active Bridge Converter in a Standalone Wind Power Generation System for High-Efficiency Battery-Discharging Operation," Energies, MDPI, vol. 14(20), pages 1-17, October.
    8. Rupesh Jha & Mattia Forato & Satya Prakash & Hemant Dashora & Giuseppe Buja, 2022. "An Analysis-Supported Design of a Single Active Bridge (SAB) Converter," Energies, MDPI, vol. 15(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:404-:d:479278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.