IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p665-d726901.html
   My bibliography  Save this article

Reliability-as-a-Service Usage of Electric Vehicles: Suitability Analysis for Different Types of Buildings

Author

Listed:
  • Akhtar Hussain

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2G2, Canada)

  • Petr Musilek

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2G2, Canada
    Department of Applied Cybernetics, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic)

Abstract

The use of electric vehicles (EVs) to provide different grid services is becoming possible due to the increased penetration levels, mileage efficiencies, and useable battery sizes of EVs. One such application is providing reliability-as-a-service (RaaS) during short-term power outages. Instead of using a dedicated backup power source, EVs can be contracted to provide RaaS, which is an environmentally friendly solution with benefits for both building owners and EV owners. However, the presence of EVs at a particular location during different hours of the day and the availability of energy from EVs is uncertain. Therefore, in this study, a suitability analysis is performed concerning the use of EVs to provide RaaS for different types of buildings. First, the National Household Travel Survey (NHTS) survey data are used to estimate driver behavior, such as arrival/departure times, daily mileage, and traveling duration. Then, the usable battery size and mileage efficiency of EVs is extracted from the database of commercially available EVs. Based on these parameters, the daily energy consumption and available energy of EVs to provide RaaS are estimated. A suitability analysis is conducted for residential, commercial/industrial, and mixed buildings for both weekdays and holidays. The participation ratio of EV owners is varied between 10 and 90%, and nine cases are simulated for commercial/industrial buildings and multi-unit residential buildings. Similarly, the ratio of home-based EVs is varied between 5 and 50%, and 10 cases are tested for mixed buildings. The analysis shows that mixed buildings are the most suitable, while commercial/industrial buildings are the least suitable for using EVs to provide RaaS. To this end, an index is proposed to analyze and determine the desired ratio of EVs to be contracted from homes and workplaces for mixed buildings. Finally, the impact of EV fleet size on the available energy for RaaS is also analyzed.

Suggested Citation

  • Akhtar Hussain & Petr Musilek, 2022. "Reliability-as-a-Service Usage of Electric Vehicles: Suitability Analysis for Different Types of Buildings," Energies, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:665-:d:726901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    2. Hui Hou & Mengya Xue & Yan Xu & Jinrui Tang & Guorong Zhu & Peng Liu & Tao Xu, 2018. "Multiobjective Joint Economic Dispatching of a Microgrid with Multiple Distributed Generation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    3. Nallapaneni Manoj Kumar & Aritra Ghosh & Shauhrat S. Chopra, 2020. "Power Resilience Enhancement of a Residential Electricity User Using Photovoltaics and a Battery Energy Storage System under Uncertainty Conditions," Energies, MDPI, vol. 13(16), pages 1-26, August.
    4. Alex Felice & Jacopo Barbieri & Ander Martinez Alonso & Maarten Messagie & Thierry Coosemans, 2023. "Challenges of Phasing out Emergency Diesel Generators: The Case Study of Lacor Hospital’s Energy Community," Energies, MDPI, vol. 16(3), pages 1-15, January.
    5. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    6. Hou, Hui & Xue, Mengya & Xu, Yan & Xiao, Zhenfeng & Deng, Xiangtian & Xu, Tao & Liu, Peng & Cui, Rongjian, 2020. "Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load," Applied Energy, Elsevier, vol. 262(C).
    7. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    8. Jianwei Gao & Yu Yang & Fangjie Gao & Haoyu Wu, 2022. "Two-Stage Robust Economic Dispatch of Regional Integrated Energy System Considering Source-Load Uncertainty Based on Carbon Neutral Vision," Energies, MDPI, vol. 15(4), pages 1-16, February.
    9. Mohammad Dehghani & Mohammad Mardaneh & Om P. Malik & Josep M. Guerrero & Carlos Sotelo & David Sotelo & Morteza Nazari-Heris & Kamal Al-Haddad & Ricardo A. Ramirez-Mendoza, 2020. "Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    10. Marcin Szott & Szymon Wermiński & Marcin Jarnut & Jacek Kaniewski & Grzegorz Benysek, 2021. "Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks," Energies, MDPI, vol. 14(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:665-:d:726901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.