IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p660-d726858.html
   My bibliography  Save this article

Optimising High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food Production Using Artificial Intelligence: Case of Europoint Complex in Rotterdam

Author

Listed:
  • Berk Ekici

    (Chair of Design Informatics, Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Okan F. S. F. Turkcan

    (Department of Architecture, Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Michela Turrin

    (Chair of Design Informatics, Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Ikbal Sevil Sariyildiz

    (Chair of Design Informatics, Faculty of Architecture and the Built Environment, Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Mehmet Fatih Tasgetiren

    (Department of Industrial and Systems Engineering, 3301 Shelby Center, Auburn University, Auburn, AL 36849, USA)

Abstract

The increase in global population, which negatively affects energy consumption, CO 2 emissions, and arable land, necessitates designing sustainable habitation alternatives. Self-sufficient high-rise buildings, which integrate (electricity) generation and efficient usage of resources with dense habitation, can be a sustainable solution for future urbanisation. This paper focuses on transforming Europoint Towers in Rotterdam into self-sufficient buildings considering energy consumption and food production (lettuce crops) using artificial intelligence. Design parameters consist of the number of farming floors, shape, and the properties of the proposed façade skin that includes shading devices. Nine thousand samples are collected from various floor levels to predict self-sufficiency criteria using artificial neural networks (ANN). Optimisation problems with 117 decision variables are formulated using 45 ANN models that have very high prediction accuracies. 13 optimisation algorithms are used for an in-detail investigation of self-sufficiency at the building scale, and potential sufficiency at the neighbourhood scale. Results indicate that 100% and 43.7% self-sufficiencies could be reached for lettuce crops and electricity, respectively, for three buildings with 1800 residents. At the neighbourhood scale, lettuce production could be sufficient for 27,000 people with a decrease of self-sufficiency in terms of energy use of up to 11.6%. Consequently, this paper discusses the potentials and the improvements for self-sufficient high-rise buildings.

Suggested Citation

  • Berk Ekici & Okan F. S. F. Turkcan & Michela Turrin & Ikbal Sevil Sariyildiz & Mehmet Fatih Tasgetiren, 2022. "Optimising High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food Production Using Artificial Intelligence: Case of Europoint Complex in Rotterdam," Energies, MDPI, vol. 15(2), pages 1-35, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:660-:d:726858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surajet Khonjun & Rapeepan Pitakaso & Kanchana Sethanan & Natthapong Nanthasamroeng & Kiatisak Pranet & Chutchai Kaewta & Ponglert Sangkaphet, 2022. "Differential Evolution Algorithm for Optimizing the Energy Usage of Vertical Transportation in an Elevator (VTE), Taking into Consideration Rush Hour Management and COVID-19 Prevention," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    2. Hou, D. & Evins, R., 2024. "A protocol for developing and evaluating neural network-based surrogate models and its application to building energy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yorifuji, Ryota & Obara, Shin'ya, 2022. "Economic design of artificial light plant factories based on the energy conversion efficiency of biomass," Applied Energy, Elsevier, vol. 305(C).
    2. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    3. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    4. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    5. Bożena Matysiak & Stanisław Kaniszewski & Jacek Dyśko & Waldemar Kowalczyk & Artur Kowalski & Maria Grzegorzewska, 2021. "The Impact of LED Light Spectrum on the Growth, Morphological Traits, and Nutritional Status of ‘Elizium’ Romaine Lettuce Grown in an Indoor Controlled Environment," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    6. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    7. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    9. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    10. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    11. Talbot, Marie-Hélène & Monfet, Danielle, 2024. "Analysing the influence of growing conditions on both energy load and crop yield of a controlled environment agriculture space," Applied Energy, Elsevier, vol. 368(C).
    12. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Li-Chun Huang, 2019. "Consumer Attitude, Concerns, and Brand Acceptance for the Vegetables Cultivated with Sustainable Plant Factory Production Systems," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    14. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    15. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
    16. Arabzadeh, Vahid & Miettinen, Panu & Kotilainen, Titta & Herranen, Pasi & Karakoc, Alp & Kummu, Matti & Rautkari, Lauri, 2023. "Urban vertical farming with a large wind power share and optimised electricity costs," Applied Energy, Elsevier, vol. 331(C).
    17. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    18. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    19. Haoyang Chen & Xue Dong & Jie Lei & Ning Zhang & Qianrui Wang & Zhiang Shi & Jinxing Yang, 2024. "Life Cycle Assessment of Carbon Capture by an Intelligent Vertical Plant Factory within an Industrial Park," Sustainability, MDPI, vol. 16(2), pages 1-26, January.
    20. Heino Pesch & Louis Louw, 2023. "Evaluating the Economic Feasibility of Plant Factory Scenarios That Produce Biomass for Biorefining Processes," Sustainability, MDPI, vol. 15(2), pages 1-36, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:660-:d:726858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.