Economic design of artificial light plant factories based on the energy conversion efficiency of biomass
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117850
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiang, Joe-Air & Su, Yu-Li & Shieh, Jyh-Cherng & Kuo, Kun-Chang & Lin, Tzu-Shiang & Lin, Ta-Te & Fang, Wei & Chou, Jui-Jen & Wang, Jen-Cheng, 2014. "On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory," Applied Energy, Elsevier, vol. 124(C), pages 309-324.
- Graamans, Luuk & Baeza, Esteban & van den Dobbelsteen, Andy & Tsafaras, Ilias & Stanghellini, Cecilia, 2018. "Plant factories versus greenhouses: Comparison of resource use efficiency," Agricultural Systems, Elsevier, vol. 160(C), pages 31-43.
- Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
- Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu, Zhitong & Bu, Kunlang & Liu, Yongzi & Wang, Aojiang & Yuan, Wei & Xue, Jiao & Zhang, Jingjin & Bao, Hua & Lai, Dayi, 2024. "Energy examination and optimization workflow for container farms: A case study in Shanghai, China," Applied Energy, Elsevier, vol. 374(C).
- Rao Kuang & Nangui Fan & Weifeng Zhang & Song Gan & Xiaomin Zhou & Heyi Huang & Yijun Shen, 2022. "Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
- Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
- Jiajun Du & Jiahui Yang & Yonggang Zhao & Qianxin Guo & Yaodong Da & Defu Che, 2024. "Numerical Study on Effect of Flue Gas Recirculation and Co-Firing with Biomass on Combustion Characteristics in Octagonal Tangentially Lignite-Fired Boiler," Energies, MDPI, vol. 17(2), pages 1-15, January.
- Akter, Mst. Mahmoda & Surovy, Israt Zahan & Sultana, Nazmin & Faruk, Md. Omar & Gilroyed, Brandon H. & Tijing, Leonard & Arman, & Didar-ul-Alam, Md. & Shon, Ho Kyong & Nam, Sang Yong & Kabir, Mohammad, 2024. "Techno-economics and environmental sustainability of agricultural biomass-based energy potential," Applied Energy, Elsevier, vol. 359(C).
- Yeweon Kim & Hye-Ry Shin & Su-hyun Oh & Ki-Hyung Yu, 2022. "Analysis on the Economic Feasibility of a Plant Factory Combined with Architectural Technology for Energy Performance Improvement," Agriculture, MDPI, vol. 12(5), pages 1-11, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yeweon Kim & Hye-Ry Shin & Su-hyun Oh & Ki-Hyung Yu, 2022. "Analysis on the Economic Feasibility of a Plant Factory Combined with Architectural Technology for Energy Performance Improvement," Agriculture, MDPI, vol. 12(5), pages 1-11, May.
- Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
- Yu, Zhitong & Bu, Kunlang & Liu, Yongzi & Wang, Aojiang & Yuan, Wei & Xue, Jiao & Zhang, Jingjin & Bao, Hua & Lai, Dayi, 2024. "Energy examination and optimization workflow for container farms: A case study in Shanghai, China," Applied Energy, Elsevier, vol. 374(C).
- Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Dsouza, Ajwal & Newman, Lenore & Graham, Thomas & Fraser, Evan D.G., 2023. "Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics," Agricultural Systems, Elsevier, vol. 209(C).
- Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
- Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
- Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
- Bożena Matysiak & Stanisław Kaniszewski & Jacek Dyśko & Waldemar Kowalczyk & Artur Kowalski & Maria Grzegorzewska, 2021. "The Impact of LED Light Spectrum on the Growth, Morphological Traits, and Nutritional Status of ‘Elizium’ Romaine Lettuce Grown in an Indoor Controlled Environment," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
- Jiang, Joe-Air & Su, Yu-Li & Kuo, Kun-Chang & Wang, Chien-Hao & Liao, Min-Sheng & Wang, Jen-Cheng & Huang, Chen-Kang & Chou, Cheng-Ying & Lee, Chien-Hsing & Shieh, Jyh-Cherng, 2017. "On a hybrid MPPT control scheme to improve energy harvesting performance of traditional two-stage inverters used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1113-1128.
- Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
- Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
- Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
- Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
- Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
- Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
- Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
- Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
- Talbot, Marie-Hélène & Monfet, Danielle, 2024. "Analysing the influence of growing conditions on both energy load and crop yield of a controlled environment agriculture space," Applied Energy, Elsevier, vol. 368(C).
- Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
More about this item
Keywords
Plant factory; Biomass conversion efficiency; Air conditioning energy; Light energy; Biomass calorific value;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.